Page 2 sur 5

Re: Pourquoi je ne crois pas en Dieu.

Posté : 14 août15, 02:12
par vic
Le simple fait de ne pas avoir plus de raison d'être que de ne pas être , suffit à un univers pour exister .
Simplement les phénomènes qui en résultent n'en sont que relatif .

Re: Pourquoi je ne crois pas en Dieu.

Posté : 14 août15, 02:27
par HumanaFragilita
vic a écrit : Le zéro est assez insaissable puisqu'il n'est ni rien ni quelque chose .
Non, le zéro c'est déjà quelque chose. En physique, le seul zéro que je conçois c'est un point d'équilibre autour duquel deux (ou plusieurs) forces s'annulent l'une l'autre. Le zéro ne se fait pas tout seul, c'est une quantité, c'est la mesure de quelque chose, d'un phénomène.

Un zéro qui n'est ni rien ni quelque chose n'est... rien du tout, même pas un zéro. C'est un pseudo-concept.
vic a écrit : Le simple fait de ne pas avoir plus de raison d'être que de ne pas être , suffit à un univers pour exister .
Simplement les phénomènes qui en résultent n'en sont que relatif .
Bla bla...

Re: Pourquoi je ne crois pas en Dieu.

Posté : 14 août15, 02:30
par indian
HumanaFragilita a écrit : Non, le zéro c'est déjà quelque chose. En physique, le seul zéro que je conçois c'est un point d'équilibre autour duquel deux (ou plusieurs) forces s'annulent l'une l'autre. Le zéro ne se fait pas tout seul, c'est une quantité, c'est la mesure de quelque chose, d'un phénomène.

Un zéro qui n'est ni rien ni quelque chose n'est... rien du tout, même pas un zéro. C'est un pseudo-concept.

Et en physique... le zéro kelvin on en fait quoi?
Qu'est-qui tourne autour de ce point?
Si je ne m'abuse en kelvin il n'y a pas de ce ''2 forces''... c'est l'inertie du système thermique

Re: Pourquoi je ne crois pas en Dieu.

Posté : 14 août15, 02:35
par ultrafiltre2
vic a écrit : Hawkins ne dit pas que l'univers peut se créer à partir de rien , il dit que le zéro est son fondement .
Alors si il dit ça (et je suis sûr qu'il dit ça mais à sa place je fermerai ma gueule) , c'est tout simplement qu'il dit une grosse connerie et qu'il ne faudrait pas gober sans digérer Zermelo
En plus je ne sais même pas de quoi vous parlez dans ce topic (en plus de ça je dois venir ce soir pour le topic de CDL et j'ai pas trop de temps là mais là vite fait ):
Je veux bien qu'il dise cela mais s'il dit cela trouve moi le modèle impossible qu'il emploierai en disant que la physique utilise le zero comme modèle de fondement de la théorie du Big Bang en se basant sur ce que dit Zermelo àpropos du zero

Vic je devais venir ce soir pour l'autre sujet,il te reste plus que très peu de temps pour te préparer à mon post de ce soir sur le topic de CDL

D'abord si on parle de zero c'est qu'on parle d'un ensemble et que zero est son élément et je concède que là l'ensemble vide n'est pas le zero dont parlerai Hawkings -qui n'a jamais rien compris aux maths fondamentales ceci dit-
Zermelo ne part pas d'une définition du concept d'ensemble mais part d'un moyen de construction qui permet de donner des propriétés qui caractérisent ce concept

On parle d'un objet appelé "ensemble" dont on sait qu'il peut posséder des éléments (ici le concept d'appartenance : des éléments qui appartiennent à un ensemble) et ces éléments sont eux mêmes des ensembles

cela il le décrète!

au passage sans même définir le vocabulaire qu'il emploie :
ensemble : on sait pas ce que c'est
concept d'appartenance : on sait pas ce que c'est
la seule chose qu'on sait : puisque c'est lui qui le décrète :
un élément d'un ensemble est lui-même un ensemble


Soit un ensemble noté A si on dit que:
a "appartiens à" A et on note a "in" A de l'anglais

autre symbole (voir liste en vert ci-dessous) on notera
x "notin" E pour dire que l'élément x n'appartiens pas à E

Pour tout ensemble A , la quantité de ses éléments est noté Card (A)

Lorsqu'un ensemble A ne possède qu'un seul et unique élément on dit que l'ensemble a est un singleton et dans ce cas on obtiens Card (A)=1

pour l'écriture descriptive des éléments d'un ensemble A si on note A={a1,a2,...,an } cela signifie que les "ai" (avec i de 1 à n) appartiennent à l'ensemble A

de plus en écrivant A={a1,a2,...,an } on vérifie l'équivalence logique : ( ai=aj )<=> ( i=j )
ce qui signifie que obligatoirement si i et j sont différent alors ai et aj sont deux éléments distincts de l'ensemble A

Ainsi Zermelo définit six axiomes

(cela va nécessiter des explications mais je les écrits déjà)

premier axiome:axiome d'extentionnalité
qui stipule que deux ensembles A et B sont égaux si et seulement si ils ont les mêmes éléments (on rappelle que l'élément d'un ensemble est toujours lui même un ensemble)

deuxième axiome:Shéma d'axiomes de compréhension non restreint
qui stipule (bon cela va nécessiter quelques explications ) que si P est un prédicat de rang quelconque mais libre en x et si A est un ensemble alors l'ensemble des éléments de A pour lesquels P est vrai est aussi un ensemble
on le note {x|x "in" A|P(x)}
(rappel) la notation x "in" A signifiant que l'élément x appartiens à l'ensemble A

troisième axiome:axiome de la paire
qui stipule que si A et B sont des ensembles alors il existe un nouvel ensemble qui contiens comme uniques éléments A et B
on note {A,B} ce nouvel ensemble

quatrième axiome:axiome de l'union
qui stipule que si A et B sont des ensembles alors l'ensemble A "UNION" B = {x|x "in" A + |x "in" B }
rappel -de l'apparté écrit en vert : + qui signifie le symbole du "or" en logique
P + Q = R est aussi une proposition qui est toujours vraie sauf si uniquement P et Q sont faux

cinquième axiome:axiome de puissance
qui stipule que pour tout ensemble A alors il existe un ensemble noté P(A)
-attention à ne pas confondre avec la notation précédente concernant les prédicats voir deuxième axiome-
dont noté P(A) et qui possède pour éléments tous les sous ensembles de A (cela va nécessiter des explications)

sixième axiome:axiome de l'infini
l'axiome de l'infini stipule qu'il existe un ensemble contenant l'ensemble vide et le successeur de chacun de ses ensembles
le plus petit des ensembles possédant ces proprietés se nomme |N l'ensemble des entiers naturels
on pose Card (|N)=Aleph_0

______________________________________________________________________

premier axiome:axiome d'extentionnalité
qui stipule que deux ensembles A et B sont égaux si et seulement si ils ont les mêmes éléments (on rappelle que l'élément d'un ensemble est toujours lui même un ensemble)

pour cet axiome là on a pas grand chose à dire sauf qu'on ne peut pas savoir si A=B lorsque A et B sont des ensembles car en fait on ne sait pas ce qui fera que l'on dira que deux ensembles ont les mêmes éléments
ça nous avance pas beaucoup en tout cas pour l'instant
on doit juste se rappeler cette phrase et la tenir pour vraie(comme pour tous les axiomes ceux-ci sont tenus pour vrais)
deux ensembles A et B sont égaux si et seulement si ils ont les mêmes éléments
on prend cet axiome tel qu'il est, à défaut d'en savoir plus , au moins on sait ça (cette phrase)


______________________________________________________________________

deuxième axiome:Shéma d'axiomes de compréhension non restreint
qui stipule que si P est un prédicat de rang quelconque mais libre en x et si A est un ensemble alors l'ensemble des éléments de A pour lesquels P est vrai est aussi un ensemble
on le note {x|x "in" A|P(x)}
(rappel) la notation x "in" A signifiant que l'élément x appartiens à l'ensemble A

là par contre on passe à autre chose : ça demande des explications

en premier lieu : une proposition possède une valeur logique et quand Zermelo a présenté ses axiomes il parlait de la valeur logique d'une proposition qui est en fait l'élément d'un ensemble definit par une algebre de Boole
si l'ensemble sur lequel est construit cet algebre est {0,1} alors dans ce cas les propositions sont soit de valeur 0 (fausses) soit de valeur 1 (vraies)

ATTENTION: ici parler des deux éléments 0 et 1 n'a strictement aucun rapport avec des entiers naturel
ici il s'agit d'une tout autre symbolique: la symbolique donnant une valeur à une proposition (en dehors de ce qu'elle peut dire)
mais en apparté comme on le verra plus loin : dans une algèbre de Boole rien interdit que l'ensemble possède plus de deux éléments mais bon on en reparlera
ici on parle de logique d'ordre zéro qui en fait est le calcul des propositions et de plus binaire : c'est à dire que l'ensemble sur lequel est construit cet algebre, possède que deux éléments

ensuite toujours en ce qui concerne ce deuxième axiome

pour toute proposition P on notera v(P) sa valeur

et de plus quelque soit l'algebre de Boole qui definie la logique d'ordre zéro (binaire ou pas)

lorsque v(P)=0 on dira que P est fausse

lorsque v(P)=1 on dira que P est vraie

en apparté on a vu les connecteurs logiques et d'autres symboles logiques

en ce qui concerne les prédicats

un prédicat P (majuscule ) est une proposition p (minuscule) dans laquelle on stipule par des quantificateurs...

le quantificateur "exists" signifie : "il existe"

et le symbole "nexist" pour signifier "il n'existe pas"

le quantificateur "forall" signifie : "tout" ou plus explicitement "quelque soit"

...donc par des quantificateurs qui s'exercent sur une ou plusieurs variables dites variables liées à ces quantificateurs

que la ou les variables libres , parmis une quantitée de variables fixées par les quantificateurs , vérifient la proposition p

on va prendre un exemple mais avant il faut bien faire attention à distinguer variable liée et variable libre

une variable liée ne possede pas d'identité propre : elle peut être remplacée par n'importe qu'elle autre variable qui n'apparait pas dans une formule

ainsi par exemple

"exists" x,(x<y) est identique à "exists" z,(z<y) en fait la seule variable libre et qui possede une identitee propre c'est y
on peut remplacer x par n'importe qu'elle varible mais pas par y

sachant qu'on a dit que "exists" x,(x<y) et donc que y possede une identitée propre alors il sera interdit de lier y par un quantificateur

car ce "y" est quelque chose possedent une existence concrète contrairement aux variables liées

enfin : le rang d'un prédicat designe la quantité de variables librres qu'il contiens

par exemple : "forall"x<y est un prédicat de rang 1 car il n'y a qu'une seule variable libre (c'est "y")

et pour terminer en ce qui concerne ce deuxieme axiome

on considere la terminologie

"exists"x,A(x) signifie qu'il existe un terme x pour lequel la relation A est vrai (il peut même en exister plusieurs)

"forall"x,A(x) signifie que A est vrai pour tout x

{x|A(x)} est un ensemble par lequel la relation A est vrai pour tous les éléments de cet ensemble

de plus si un element verifie cette relation alors cet élément appartiens à cet ensemble

le concept de l'inclusion
Soient deux ensembles E et F et une relation A(x):=(x "in" F)=>(x "in" E),"forall" x,A(x)
signifie qu'il existe deux ensembles E et F tels que tous les éléments de F appartiennent aussi à l'ensemble E

on notera : F 'inc" E et qui signifie que F est inclus dans E

par le schéma d'axiome de compréhension non restreint (le deuxième axiome) on construit l'ensemble F

que l'on note F={x|A(x):=x "in" F => x "in" E| P:="forall" x,A(x)}

ici P est un prédicat de rang 1 et A(x) la proposition qui doit se vérifier
l'ensemble des éléments de E pour lequel P est vrai est l'ensemble F
on vérifie l'équivalence logique (E=F)<=>(E "inc" F . F "inc" E)

c'est donc à partir du deuxième axiome et avec le concept de l'inclusion qui en découle que le premier axiome prend tout son sens

le premier axiome (axiome d'extentionnalité) disait que A=B si et seulement si A et B ont les mêmes éléments mais on ne savait pas comment cela était vérifiable

à présent on sait que A=B SI ET SEULEMENT SI
A est inclus B et aussi B est inclus dans A

formalisé ici par la notation

(A=B) <=> ((A "inc" B) . (B "inc" A))

et de plus on dispose à présent du premier concept de la théorie des ensembles : celui de l'inclusion

autre symbole
x "neq" y qui signifie x non égal à y



concept de la complémentarité

soient E et F deux ensembles, alors si

E\F est un ensemble que uniquement si F "inc" E , dans le cas contraire E\F n'a aucune signification
attention dire d'un objet maths qu'il n'a aucune signification cela reviens à dire que cet objet là n'a aucun sens
bref il ne possède aucune legitimité d'existence

donc si F "inc" E dans ce cas alors E\F est un ensemble que l'on nomme le complémentaire de F dans E

cet ensemble se construit selon

E\F={x | F "inc" E | x "in" E |x "notin" F | A(x):=(x "in" F)=>(x "in" E) }

cet ensemble existe que uniquement si F est inclus dans E dans le cas contraire il est absurde et ne possède aucune légitimité d'existence

en fait E\F désigne l'ensemble des éléments de E qui n'appartiennent pas à F

théorême de l'ensemble vide

Soit E un ensemble, par conséquent comme on l'a vu dans le premier concept celui de l'inclusion on vérifie donc E "inc" E
et aussi comme on l'a vu dans le deuxième concept celui de la complémentarité E\E existe

or quelque soit un élément qui serait dans E\E alors il faudrait qu'il soit à la fois dans E et à la fois abscent de E

ce qui est impossible

il résulte donc que E\E est un ensemble vide

de plus si E est lui même vide on vérifie quand même E "inc" E

notation Ø pour désigner l'ensemble vide



théorême de l'unicité

Soit E un ensemble alors si x "in" E et y "in" E tels que x=y on démontre que x et y sont un seul et même élément de E

admettons que E={x,y} "neq" {x} tandis que x=y
posons F={y} on vérifie donc F "inc" E de sorte que E\F={x}
mais étant donné que x=y il en résulte donc que E\F={y} or on a dit que y "in" F ce qui est absurde



le théorême de la totalité

ce théorême démontre une chose très importante : il n'existe pas d'ensemble de tous les ensembles

rien interdit dans l'axiomatique de Zermelo qu'il puisse exister des ensembles (un peu bizarres certes mais c'est un jugement de valeur que la notion de bizarrerie) que des ensembles puissent s'appartenirs à eux mêmes
E est un ensemble et si E s'appartiens à lui même alors E "in" E

cependant on peut demontrer que Ø "notin" Ø
en effet car si Ø est vide il ne peut rien contenir

il résulte donc que dans l'axiomatique de Zermelo il existe deux catégories d'ensembles

les ensembles qui s'appartiennent à eux mêmes et sont de types E "in" E et les autres qui sont de types E "notin" E

on démontre qu'il n'existe pas d'ensemble E tel que pour tout ensemble F on verifie F "in" E

en effet si cet ensemble existe alors il est tel que "forall" K , un ensemble alors E "notin" K et K "in" E

or si E est de type E "in" E alors il existe K=E tel que E "in" (K=E) or il faut que E "notin " K

si E est de type E "notin" E alors il existe K=E tel que E=K "notin" E or il faut que K "in" E


troisième axiome:axiome de la paire

Si A et B sont des ensembles alors il existe un nouvel ensemble qui contiens comme unique éléments : A et B

on le note {A,B}

par le théorême de l'unicité alors si de plus A=B on obtiens comme nouvel ensemble l'ensemble {A}

mais attention ici A "neq" {A} ce ne sont pas du tout les mêmes ensembles


quatrième axiome:axiome de l'union
Si A et B sont des ensembles, alors A "UNION" B ={x | (x "in" A)+(x "in" B)} existe
cet opérateur "UNION" est associatif de sorte que
( A "UNION" B) "UNION" C = A "UNION" (B "UNION" C )
et on peut noter
( A "UNION" B) "UNION" C = A "UNION" B "UNION" C
de plus il est commutatif de sorte que
A "UNION" B=B "UNION" A

concept de l'intersection
on note A "INTER" B={ x | (x "in" A).(x "in" B)}
l'opérateur "INTER" est associatif et commutatif
concept d'entier naturel
On construit tout entier naturel en construisant un ensemble fini dont le cardinal désigne cet entier

par le deuxième axiome on a vu le concept d'ensemble vide Ø ainsi Card(Ø)=0
par le troisième axiome on peut construire l'ensemble {Ø} ainsi Card ({Ø})=1
par le troisième axiome on peut construire l'ensemble {Ø,{Ø}} ainsi Card ({Ø,{Ø}})=2

par le troisième axiome on construit les ensembles {Ø},{{Ø}},{{Ø,{Ø}}}
par le quatrième axiome on construit l'ensemble {Ø} "UNION" {{Ø}} "UNION" {{Ø,{Ø}}}={Ø,{Ø},{Ø,{Ø}}}
ainsi Card ({Ø,{Ø},{Ø,{Ø}}})=3
on poursuit en utilisant le troisième axiome en construisant les ensembles
{Ø},{{Ø}},{{Ø,{Ø}}},{{Ø,{Ø},{Ø,{Ø}}}} et on utilise le quatrième axiome pour obtenir l'ensemble de cardinal 4

et ainsi de suite...

cinquième axiome:axiome de puissance

pour tout ensemble A il existe un ensemble noté P(A), qui possède pour éléments tous les sous ensembles de A
autrement dit P(A)={X | X "inc" A }
pour un ensemble A de cardinal n donc pour Card(A)=n alors par recurrence on démontre que Card (P(A))=2^n
par exemple
pour A=Ø donc Card (A)=0 alors P(A)={Ø} et donc Card (P(A))=1
pour A={a_1} alors P(A)={Ø,{a_1}} et donc Card (P(A))=2
pour A={a_1,a_2} alors P(A)={Ø,{a_1},{a_2},{a_1,a_2}} et donc Card (P(A))=4
pour A={a_1,a_2,a_3} alors P(A)={Ø,{a_1},{a_2},{a_3},{a_1,a_2},{a_1,a_3},{a_2,a_3},A} et donc Card (P(A))=8
et ainsi de suite par récurrence

concept d'algebre
Soit X un ensemble et soit P(X) l'ensemble des ses parties
alors un sous ensemble K de P(X)est appelé une algebre (ou algebre de parties de X) si on verifie
Ø "in" K
A "in" K => X\A "in" K*a,B "in" K => A "UNION" B "in" K

notion superficielle d'algebre de Boole
on entre pas dans les détail ici car il manque de très nombreux concepts
une algebre de Boole se definie dans P(E) pour tout e non vide
l'élément 0 de cet algebre correspond à l'element Ø de P(E)
l'élément 1 de cet algebre correspond à l'element E de P(E)
la loi + de cet algebre correspond à la loi "UNION"
la loi . de cet algebre correspond à la loi "INTER"
la bijection \x correspond à l'opération E\x qui donne le complémentaire de x dans E

sixième axiome:axiome de l'infini
si X est un ensemble alors on définit X^+ le successeur de X comme étant X "UNION" {X}
ceci reste possible par le troisième et quatrième axiome
et par eux on a construit les entiers naturels

l'axiome de l'infini stipule qu'il existe un ensemble contenant l'ensemble vide et le successeur de chacun de ses ensembles
le plus petit des ensembles possédant ces proprietés se nomme |N l'ensemble des entiers naturels
on pose Card (|N)=Aleph_0 est un infini actuel


les sept symboles suivants sont des connecteurs logiques en logique binaire d'ordre zéro(je m'explique ici sur cette terminologie)
<=> qui signifie le symbole d'équivalence logique
=> qui signifie le symbole de l'implication logique
. qui signifie le symbole du "AND" en logique
+ qui signifie le symbole du "OR" en logique
++ qui signifie le symbole du "lor" ou "XOR" en logique dit "OR" exclusif
T qui signifie le symbole du connecteur donnant toujours un résultat vrai
┴ qui signifie le symbole du connecteur donnant toujours un résultat faux

par ailleurs on considère aussi le symbole :
¬ qui signifie le symbole de la négation d'une proposition

en logique binaire d'ordre zéro on considère toute proposition P est une déclaration possédant une valeur de vérité :
soit VRAI, soit FAUSSE
pour une proposition P on notera v(P) sa valeur de vérité
si P est Vrai on notera v(P)=1
si P est fausse on notera v(P)=0

¬ qui signifie le symbole de la négation d'une proposition
si P est Vrai alors dans ce cas ¬ P est une proposition fausse
en fait ¬ P=Q ici P et Q sont des propositions et si P est Vrai alors dans ce cas Q est une proposition fausse car ici ¬P=Q

de même si P est Fausse alors dans ce cas ¬ P est une proposition vraie

calcul des proposition en logique binaire d'ordre zéro
P et Q sont des propositions alors :
P <=> Q = R est aussi une proposition qui est toujours vraie si et seulement si P et Q possèdent la même valeur de vérité
P => Q = R est aussi une proposition qui est toujours vraie sauf si uniquement P est vrai tandis que Q est fausse
P . Q = R est aussi une proposition qui est toujours fausse sauf si uniquement P et Q sont vraies
P + Q = R est aussi une proposition qui est toujours vraie sauf si uniquement P et Q sont faux
P ++ Q = R est aussi une proposition qui est toujours vraie sauf si uniquement P et Q possèdent la même valeur de vérité
P T Q = R est aussi une proposition qui est toujours vraie quelques soient P et Q
P ┴ Q = R est aussi une proposition qui est toujours fausse quelques soient P et Q

a "appartiens à" A et on note a "in" A de l'anglais

la non appartenance notée a "notin" A

le quantificateur "exists" signifie : "il existe"

la non existence notée "nexists"

le quantificateur "forall" signifie : "tout" ou plus explicitement "quelque soit"

:= ce symbole dit que ce qui s'y trouve à gauche est defini par ce qui s'y trouve à droite
un peu comme pour u n dictionnaire ou pour un mot
maison := définition du mot maison

F "inc" E et qui signifie que F est inclus dans E
la non inclusion notée F "ninc" E


égalité de deux ensembles A=B
A=B SI ET SEULEMENT SI
A est inclus B et aussi B est inclus dans A

formalisé ici par la notation

(A=B) <=> ((A "inc" B) . (B "inc" A))

la non égalité de deux ensembles A "neq" B

le complémentaire de F dans E et noté E\F selon
E\F={x | F "inc" E | x "in" E |x "notin" F | A(x):=(x "in" F)=>(x "in" E) }

de sorte que si F "ninc" E alors "nexists" X tel que X= {x | F "inc" E | x "in" E |x "notin" F | A(x):=(x "in" F)=>(x "in" E) }

notation Ø pour désigner l'ensemble vide

l'union A "UNION" B ={x | (x "in" A)+(x "in" B)}

l'intersection A "INTER" B={ x | (x "in" A).(x "in" B)}

Re: Pourquoi je ne crois pas en Dieu.

Posté : 14 août15, 02:44
par HumanaFragilita
indian a écrit : Mais si vous désirez vous fier qu'au peu que nous connaissons de la vie, de l'univers et de TOUT...
J'ai pas de problème non plus.
Et à quoi d'autre voulez-vous vous fier qu'à ce que nous connaissons, même si c'est peu ? A ce que nous ne connaissons pas ? Méthode parfaite pour ne rien connaître sur rien.

Par ailleurs, ce que nous connaissons de la vie et de l'univers n'est pas si peu que ça. Vous devriez être fasciné par ce que l'esprit humain à réussi à comprendre de l'univers, par la seule force de son intelligence et de son expérience, plutôt que par les fantômes de l'ignorance.
indian a écrit : Et en physique... le zéro kelvin on en fait quoi?
Qu'est-qui tourne autour de ce point?
Si je ne m'abuse en kelvin il n'y a pas de ce ''2 forces''... c'est l'inertie du système thermique
Ok, il n'y a pas deux forces. Mais ça n'en reste pas moins la mesure de quelque chose, en l’occurrence le mouvement des électrons. Alors quand on me parle d'un zéro comme d'une entité à part entière, je ne suis plus.

Re: Pourquoi je ne crois pas en Dieu.

Posté : 14 août15, 02:50
par vic
humana fragilita a dit :Non, le zéro c'est déjà quelque chose. En physique, le seul zéro que je conçois c'est un point d'équilibre autour duquel deux (ou plusieurs) forces s'annulent l'une l'autre. Le zéro ne se fait pas tout seul, c'est une quantité, c'est la mesure de quelque chose, d'un phénomène.
Non , le zéro n'est pas une mesure , il est la conséquence d'une mesure , mais il quantifie sans quantifier d'où sa fonction de zéro .
Mais il a de nombreuses dimensions , ce que tu dis est vrai aussi , tout dépend sous quel angle on observe les choses .
fragilitaa humana a dit :Non, le zéro c'est déjà quelque chose
laisses moi mettre en doute ta thèse oui et non , il n'a plus quelque chose que rien .

Re: Pourquoi je ne crois pas en Dieu.

Posté : 14 août15, 02:50
par ultrafiltre2
Je ne comprend vraiment pas comment vous arrivez à gober tout ce que dit Hawkings quand il parle d'un domaine dans lequel il ne connait strictement rien

Qui est plus qualifié pour parler de l'élément zéro : Zermelo ou cet imbécile de Hawking ?

et si Vic tu as un doute sur ce que je dit alors relis mon dernier post

ceci dit là pour ce soir n'oublie pas de venir pour contrer mon argumentation sur le topic de CDL

Re: Pourquoi je ne crois pas en Dieu.

Posté : 14 août15, 02:52
par indian
HumanaFragilita a écrit :Et à quoi d'autre voulez-vous vous fier qu'à ce que nous connaissons, même si c'est peu ? A ce que nous ne connaissons pas ? Méthode parfaite pour ne rien connaître sur rien.

Par ailleurs, ce que nous connaissons de la vie et de l'univers n'est pas si peu que ça. Vous devriez être fasciné par ce que l'esprit humain à réussi à comprendre de l'univers, par la seule force de son intelligence et de son expérience, plutôt que par les fantômes de l'ignorance.

Bien au contraire...excellent prise de conscience pour chercher à savoir plus... :wink:

Vous nous trouvez bien connaissant en 2015 car nous savons plus qu'en 1843??? :lol: ou qu' en l'an 231... ou qu'il y a 200,000 ans quand on a commencé à travailler des artéfacts, dessiner, représenter ...
Laissez moi rire...
Avez vous seulement osé imaginer tout ce qu'on ignore?
Ce qu'on découvrira dans 100 ans... ou même dans 5 minutes?

Re: Pourquoi je ne crois pas en Dieu.

Posté : 14 août15, 02:54
par HumanaFragilita
vic a écrit : Non , le zéro n'est pas une mesure , il est la conséquence d'une mesure , mais il quantifie sans quantifier d'où sa fonction de zéro .
Mais il a de nombreuses dimensions , ce que tu dis est vrai aussi , tout dépend sous quel angle on observe les choses .
Il quantifie sans quantifier ? Pfou...

Re: Pourquoi je ne crois pas en Dieu.

Posté : 14 août15, 02:55
par ultrafiltre2
Ils se sont donnés le mot c'est pas possible!

Indian n'a pas des filles à s'occuper plutôt que de venir ici ??? :interroge:
vic a écrit : Hawkins ne dit pas que l'univers peut se créer à partir de rien , il dit que le zéro est son fondement .
ultrafiltre2 a écrit :
Alors si il dit ça (et je suis sûr qu'il dit ça mais à sa place je fermerai ma gueule) , c'est tout simplement qu'il dit une grosse connerie et qu'il ne faudrait pas gober sans digérer Zermelo
En plus je ne sais même pas de quoi vous parlez dans ce topic (en plus de ça je dois venir ce soir pour le topic de CDL et j'ai pas trop de temps là mais là vite fait ):
Je veux bien qu'il dise cela mais s'il dit cela trouve moi le modèle impossible qu'il emploierai en disant que la physique utilise le zero comme modèle de fondement de la théorie du Big Bang en se basant sur ce que dit Zermelo àpropos du zero

Vic je devais venir ce soir pour l'autre sujet,il te reste plus que très peu de temps pour te préparer à mon post de ce soir sur le topic de CDL

D'abord si on parle de zero c'est qu'on parle d'un ensemble et que zero est son élément et je concède que là l'ensemble vide n'est pas le zero dont parlerai Hawkings -qui n'a jamais rien compris aux maths fondamentales ceci dit-
Zermelo ne part pas d'une définition du concept d'ensemble mais part d'un moyen de construction qui permet de donner des propriétés qui caractérisent ce concept

On parle d'un objet appelé "ensemble" dont on sait qu'il peut posséder des éléments (ici le concept d'appartenance : des éléments qui appartiennent à un ensemble) et ces éléments sont eux mêmes des ensembles

cela il le décrète!

au passage sans même définir le vocabulaire qu'il emploie :
ensemble : on sait pas ce que c'est
concept d'appartenance : on sait pas ce que c'est
la seule chose qu'on sait : puisque c'est lui qui le décrète :
un élément d'un ensemble est lui-même un ensemble


Soit un ensemble noté A si on dit que:
a "appartiens à" A et on note a "in" A de l'anglais

autre symbole (voir liste en vert ci-dessous) on notera
x "notin" E pour dire que l'élément x n'appartiens pas à E

Pour tout ensemble A , la quantité de ses éléments est noté Card (A)

Lorsqu'un ensemble A ne possède qu'un seul et unique élément on dit que l'ensemble a est un singleton et dans ce cas on obtiens Card (A)=1

pour l'écriture descriptive des éléments d'un ensemble A si on note A={a1,a2,...,an } cela signifie que les "ai" (avec i de 1 à n) appartiennent à l'ensemble A

de plus en écrivant A={a1,a2,...,an } on vérifie l'équivalence logique : ( ai=aj )<=> ( i=j )
ce qui signifie que obligatoirement si i et j sont différent alors ai et aj sont deux éléments distincts de l'ensemble A

Ainsi Zermelo définit six axiomes

(cela va nécessiter des explications mais je les écrits déjà)

premier axiome:axiome d'extentionnalité
qui stipule que deux ensembles A et B sont égaux si et seulement si ils ont les mêmes éléments (on rappelle que l'élément d'un ensemble est toujours lui même un ensemble)

deuxième axiome:Shéma d'axiomes de compréhension non restreint
qui stipule (bon cela va nécessiter quelques explications ) que si P est un prédicat de rang quelconque mais libre en x et si A est un ensemble alors l'ensemble des éléments de A pour lesquels P est vrai est aussi un ensemble
on le note {x|x "in" A|P(x)}
(rappel) la notation x "in" A signifiant que l'élément x appartiens à l'ensemble A

troisième axiome:axiome de la paire
qui stipule que si A et B sont des ensembles alors il existe un nouvel ensemble qui contiens comme uniques éléments A et B
on note {A,B} ce nouvel ensemble

quatrième axiome:axiome de l'union
qui stipule que si A et B sont des ensembles alors l'ensemble A "UNION" B = {x|x "in" A + |x "in" B }
rappel -de l'apparté écrit en vert : + qui signifie le symbole du "or" en logique
P + Q = R est aussi une proposition qui est toujours vraie sauf si uniquement P et Q sont faux

cinquième axiome:axiome de puissance
qui stipule que pour tout ensemble A alors il existe un ensemble noté P(A)
-attention à ne pas confondre avec la notation précédente concernant les prédicats voir deuxième axiome-
dont noté P(A) et qui possède pour éléments tous les sous ensembles de A (cela va nécessiter des explications)

sixième axiome:axiome de l'infini
l'axiome de l'infini stipule qu'il existe un ensemble contenant l'ensemble vide et le successeur de chacun de ses ensembles
le plus petit des ensembles possédant ces proprietés se nomme |N l'ensemble des entiers naturels
on pose Card (|N)=Aleph_0

______________________________________________________________________

premier axiome:axiome d'extentionnalité
qui stipule que deux ensembles A et B sont égaux si et seulement si ils ont les mêmes éléments (on rappelle que l'élément d'un ensemble est toujours lui même un ensemble)

pour cet axiome là on a pas grand chose à dire sauf qu'on ne peut pas savoir si A=B lorsque A et B sont des ensembles car en fait on ne sait pas ce qui fera que l'on dira que deux ensembles ont les mêmes éléments
ça nous avance pas beaucoup en tout cas pour l'instant
on doit juste se rappeler cette phrase et la tenir pour vraie(comme pour tous les axiomes ceux-ci sont tenus pour vrais)
deux ensembles A et B sont égaux si et seulement si ils ont les mêmes éléments
on prend cet axiome tel qu'il est, à défaut d'en savoir plus , au moins on sait ça (cette phrase)


______________________________________________________________________

deuxième axiome:Shéma d'axiomes de compréhension non restreint
qui stipule que si P est un prédicat de rang quelconque mais libre en x et si A est un ensemble alors l'ensemble des éléments de A pour lesquels P est vrai est aussi un ensemble
on le note {x|x "in" A|P(x)}
(rappel) la notation x "in" A signifiant que l'élément x appartiens à l'ensemble A

là par contre on passe à autre chose : ça demande des explications

en premier lieu : une proposition possède une valeur logique et quand Zermelo a présenté ses axiomes il parlait de la valeur logique d'une proposition qui est en fait l'élément d'un ensemble definit par une algebre de Boole
si l'ensemble sur lequel est construit cet algebre est {0,1} alors dans ce cas les propositions sont soit de valeur 0 (fausses) soit de valeur 1 (vraies)

ATTENTION: ici parler des deux éléments 0 et 1 n'a strictement aucun rapport avec des entiers naturel
ici il s'agit d'une tout autre symbolique: la symbolique donnant une valeur à une proposition (en dehors de ce qu'elle peut dire)
mais en apparté comme on le verra plus loin : dans une algèbre de Boole rien interdit que l'ensemble possède plus de deux éléments mais bon on en reparlera
ici on parle de logique d'ordre zéro qui en fait est le calcul des propositions et de plus binaire : c'est à dire que l'ensemble sur lequel est construit cet algebre, possède que deux éléments

ensuite toujours en ce qui concerne ce deuxième axiome

pour toute proposition P on notera v(P) sa valeur

et de plus quelque soit l'algebre de Boole qui definie la logique d'ordre zéro (binaire ou pas)

lorsque v(P)=0 on dira que P est fausse

lorsque v(P)=1 on dira que P est vraie

en apparté on a vu les connecteurs logiques et d'autres symboles logiques

en ce qui concerne les prédicats

un prédicat P (majuscule ) est une proposition p (minuscule) dans laquelle on stipule par des quantificateurs...

le quantificateur "exists" signifie : "il existe"

et le symbole "nexist" pour signifier "il n'existe pas"

le quantificateur "forall" signifie : "tout" ou plus explicitement "quelque soit"

...donc par des quantificateurs qui s'exercent sur une ou plusieurs variables dites variables liées à ces quantificateurs

que la ou les variables libres , parmis une quantitée de variables fixées par les quantificateurs , vérifient la proposition p

on va prendre un exemple mais avant il faut bien faire attention à distinguer variable liée et variable libre

une variable liée ne possede pas d'identité propre : elle peut être remplacée par n'importe qu'elle autre variable qui n'apparait pas dans une formule

ainsi par exemple

"exists" x,(x<y) est identique à "exists" z,(z<y) en fait la seule variable libre et qui possede une identitee propre c'est y
on peut remplacer x par n'importe qu'elle varible mais pas par y

sachant qu'on a dit que "exists" x,(x<y) et donc que y possede une identitée propre alors il sera interdit de lier y par un quantificateur

car ce "y" est quelque chose possedent une existence concrète contrairement aux variables liées

enfin : le rang d'un prédicat designe la quantité de variables librres qu'il contiens

par exemple : "forall"x<y est un prédicat de rang 1 car il n'y a qu'une seule variable libre (c'est "y")

et pour terminer en ce qui concerne ce deuxieme axiome

on considere la terminologie

"exists"x,A(x) signifie qu'il existe un terme x pour lequel la relation A est vrai (il peut même en exister plusieurs)

"forall"x,A(x) signifie que A est vrai pour tout x

{x|A(x)} est un ensemble par lequel la relation A est vrai pour tous les éléments de cet ensemble

de plus si un element verifie cette relation alors cet élément appartiens à cet ensemble

le concept de l'inclusion
Soient deux ensembles E et F et une relation A(x):=(x "in" F)=>(x "in" E),"forall" x,A(x)
signifie qu'il existe deux ensembles E et F tels que tous les éléments de F appartiennent aussi à l'ensemble E

on notera : F 'inc" E et qui signifie que F est inclus dans E

par le schéma d'axiome de compréhension non restreint (le deuxième axiome) on construit l'ensemble F

que l'on note F={x|A(x):=x "in" F => x "in" E| P:="forall" x,A(x)}

ici P est un prédicat de rang 1 et A(x) la proposition qui doit se vérifier
l'ensemble des éléments de E pour lequel P est vrai est l'ensemble F
on vérifie l'équivalence logique (E=F)<=>(E "inc" F . F "inc" E)

c'est donc à partir du deuxième axiome et avec le concept de l'inclusion qui en découle que le premier axiome prend tout son sens

le premier axiome (axiome d'extentionnalité) disait que A=B si et seulement si A et B ont les mêmes éléments mais on ne savait pas comment cela était vérifiable

à présent on sait que A=B SI ET SEULEMENT SI
A est inclus B et aussi B est inclus dans A

formalisé ici par la notation

(A=B) <=> ((A "inc" B) . (B "inc" A))

et de plus on dispose à présent du premier concept de la théorie des ensembles : celui de l'inclusion

autre symbole
x "neq" y qui signifie x non égal à y



concept de la complémentarité

soient E et F deux ensembles, alors si

E\F est un ensemble que uniquement si F "inc" E , dans le cas contraire E\F n'a aucune signification
attention dire d'un objet maths qu'il n'a aucune signification cela reviens à dire que cet objet là n'a aucun sens
bref il ne possède aucune legitimité d'existence

donc si F "inc" E dans ce cas alors E\F est un ensemble que l'on nomme le complémentaire de F dans E

cet ensemble se construit selon

E\F={x | F "inc" E | x "in" E |x "notin" F | A(x):=(x "in" F)=>(x "in" E) }

cet ensemble existe que uniquement si F est inclus dans E dans le cas contraire il est absurde et ne possède aucune légitimité d'existence

en fait E\F désigne l'ensemble des éléments de E qui n'appartiennent pas à F

théorême de l'ensemble vide

Soit E un ensemble, par conséquent comme on l'a vu dans le premier concept celui de l'inclusion on vérifie donc E "inc" E
et aussi comme on l'a vu dans le deuxième concept celui de la complémentarité E\E existe

or quelque soit un élément qui serait dans E\E alors il faudrait qu'il soit à la fois dans E et à la fois abscent de E

ce qui est impossible

il résulte donc que E\E est un ensemble vide

de plus si E est lui même vide on vérifie quand même E "inc" E

notation Ø pour désigner l'ensemble vide



théorême de l'unicité

Soit E un ensemble alors si x "in" E et y "in" E tels que x=y on démontre que x et y sont un seul et même élément de E

admettons que E={x,y} "neq" {x} tandis que x=y
posons F={y} on vérifie donc F "inc" E de sorte que E\F={x}
mais étant donné que x=y il en résulte donc que E\F={y} or on a dit que y "in" F ce qui est absurde



le théorême de la totalité

ce théorême démontre une chose très importante : il n'existe pas d'ensemble de tous les ensembles

rien interdit dans l'axiomatique de Zermelo qu'il puisse exister des ensembles (un peu bizarres certes mais c'est un jugement de valeur que la notion de bizarrerie) que des ensembles puissent s'appartenirs à eux mêmes
E est un ensemble et si E s'appartiens à lui même alors E "in" E

cependant on peut demontrer que Ø "notin" Ø
en effet car si Ø est vide il ne peut rien contenir

il résulte donc que dans l'axiomatique de Zermelo il existe deux catégories d'ensembles

les ensembles qui s'appartiennent à eux mêmes et sont de types E "in" E et les autres qui sont de types E "notin" E

on démontre qu'il n'existe pas d'ensemble E tel que pour tout ensemble F on verifie F "in" E

en effet si cet ensemble existe alors il est tel que "forall" K , un ensemble alors E "notin" K et K "in" E

or si E est de type E "in" E alors il existe K=E tel que E "in" (K=E) or il faut que E "notin " K

si E est de type E "notin" E alors il existe K=E tel que E=K "notin" E or il faut que K "in" E


troisième axiome:axiome de la paire

Si A et B sont des ensembles alors il existe un nouvel ensemble qui contiens comme unique éléments : A et B

on le note {A,B}

par le théorême de l'unicité alors si de plus A=B on obtiens comme nouvel ensemble l'ensemble {A}

mais attention ici A "neq" {A} ce ne sont pas du tout les mêmes ensembles


quatrième axiome:axiome de l'union
Si A et B sont des ensembles, alors A "UNION" B ={x | (x "in" A)+(x "in" B)} existe
cet opérateur "UNION" est associatif de sorte que
( A "UNION" B) "UNION" C = A "UNION" (B "UNION" C )
et on peut noter
( A "UNION" B) "UNION" C = A "UNION" B "UNION" C
de plus il est commutatif de sorte que
A "UNION" B=B "UNION" A

concept de l'intersection
on note A "INTER" B={ x | (x "in" A).(x "in" B)}
l'opérateur "INTER" est associatif et commutatif
concept d'entier naturel
On construit tout entier naturel en construisant un ensemble fini dont le cardinal désigne cet entier

par le deuxième axiome on a vu le concept d'ensemble vide Ø ainsi Card(Ø)=0
par le troisième axiome on peut construire l'ensemble {Ø} ainsi Card ({Ø})=1
par le troisième axiome on peut construire l'ensemble {Ø,{Ø}} ainsi Card ({Ø,{Ø}})=2

par le troisième axiome on construit les ensembles {Ø},{{Ø}},{{Ø,{Ø}}}
par le quatrième axiome on construit l'ensemble {Ø} "UNION" {{Ø}} "UNION" {{Ø,{Ø}}}={Ø,{Ø},{Ø,{Ø}}}
ainsi Card ({Ø,{Ø},{Ø,{Ø}}})=3
on poursuit en utilisant le troisième axiome en construisant les ensembles
{Ø},{{Ø}},{{Ø,{Ø}}},{{Ø,{Ø},{Ø,{Ø}}}} et on utilise le quatrième axiome pour obtenir l'ensemble de cardinal 4

et ainsi de suite...

cinquième axiome:axiome de puissance

pour tout ensemble A il existe un ensemble noté P(A), qui possède pour éléments tous les sous ensembles de A
autrement dit P(A)={X | X "inc" A }
pour un ensemble A de cardinal n donc pour Card(A)=n alors par recurrence on démontre que Card (P(A))=2^n
par exemple
pour A=Ø donc Card (A)=0 alors P(A)={Ø} et donc Card (P(A))=1
pour A={a_1} alors P(A)={Ø,{a_1}} et donc Card (P(A))=2
pour A={a_1,a_2} alors P(A)={Ø,{a_1},{a_2},{a_1,a_2}} et donc Card (P(A))=4
pour A={a_1,a_2,a_3} alors P(A)={Ø,{a_1},{a_2},{a_3},{a_1,a_2},{a_1,a_3},{a_2,a_3},A} et donc Card (P(A))=8
et ainsi de suite par récurrence

concept d'algebre
Soit X un ensemble et soit P(X) l'ensemble des ses parties
alors un sous ensemble K de P(X)est appelé une algebre (ou algebre de parties de X) si on verifie
Ø "in" K
A "in" K => X\A "in" K*a,B "in" K => A "UNION" B "in" K

notion superficielle d'algebre de Boole
on entre pas dans les détail ici car il manque de très nombreux concepts
une algebre de Boole se definie dans P(E) pour tout e non vide
l'élément 0 de cet algebre correspond à l'element Ø de P(E)
l'élément 1 de cet algebre correspond à l'element E de P(E)
la loi + de cet algebre correspond à la loi "UNION"
la loi . de cet algebre correspond à la loi "INTER"
la bijection \x correspond à l'opération E\x qui donne le complémentaire de x dans E

sixième axiome:axiome de l'infini
si X est un ensemble alors on définit X^+ le successeur de X comme étant X "UNION" {X}
ceci reste possible par le troisième et quatrième axiome
et par eux on a construit les entiers naturels

l'axiome de l'infini stipule qu'il existe un ensemble contenant l'ensemble vide et le successeur de chacun de ses ensembles
le plus petit des ensembles possédant ces proprietés se nomme |N l'ensemble des entiers naturels
on pose Card (|N)=Aleph_0 est un infini actuel


les sept symboles suivants sont des connecteurs logiques en logique binaire d'ordre zéro(je m'explique ici sur cette terminologie)
<=> qui signifie le symbole d'équivalence logique
=> qui signifie le symbole de l'implication logique
. qui signifie le symbole du "AND" en logique
+ qui signifie le symbole du "OR" en logique
++ qui signifie le symbole du "lor" ou "XOR" en logique dit "OR" exclusif
T qui signifie le symbole du connecteur donnant toujours un résultat vrai
┴ qui signifie le symbole du connecteur donnant toujours un résultat faux

par ailleurs on considère aussi le symbole :
¬ qui signifie le symbole de la négation d'une proposition

en logique binaire d'ordre zéro on considère toute proposition P est une déclaration possédant une valeur de vérité :
soit VRAI, soit FAUSSE
pour une proposition P on notera v(P) sa valeur de vérité
si P est Vrai on notera v(P)=1
si P est fausse on notera v(P)=0

¬ qui signifie le symbole de la négation d'une proposition
si P est Vrai alors dans ce cas ¬ P est une proposition fausse
en fait ¬ P=Q ici P et Q sont des propositions et si P est Vrai alors dans ce cas Q est une proposition fausse car ici ¬P=Q

de même si P est Fausse alors dans ce cas ¬ P est une proposition vraie

calcul des proposition en logique binaire d'ordre zéro
P et Q sont des propositions alors :
P <=> Q = R est aussi une proposition qui est toujours vraie si et seulement si P et Q possèdent la même valeur de vérité
P => Q = R est aussi une proposition qui est toujours vraie sauf si uniquement P est vrai tandis que Q est fausse
P . Q = R est aussi une proposition qui est toujours fausse sauf si uniquement P et Q sont vraies
P + Q = R est aussi une proposition qui est toujours vraie sauf si uniquement P et Q sont faux
P ++ Q = R est aussi une proposition qui est toujours vraie sauf si uniquement P et Q possèdent la même valeur de vérité
P T Q = R est aussi une proposition qui est toujours vraie quelques soient P et Q
P ┴ Q = R est aussi une proposition qui est toujours fausse quelques soient P et Q

a "appartiens à" A et on note a "in" A de l'anglais

la non appartenance notée a "notin" A

le quantificateur "exists" signifie : "il existe"

la non existence notée "nexists"

le quantificateur "forall" signifie : "tout" ou plus explicitement "quelque soit"

:= ce symbole dit que ce qui s'y trouve à gauche est defini par ce qui s'y trouve à droite
un peu comme pour u n dictionnaire ou pour un mot
maison := définition du mot maison

F "inc" E et qui signifie que F est inclus dans E
la non inclusion notée F "ninc" E


égalité de deux ensembles A=B
A=B SI ET SEULEMENT SI
A est inclus B et aussi B est inclus dans A

formalisé ici par la notation

(A=B) <=> ((A "inc" B) . (B "inc" A))

la non égalité de deux ensembles A "neq" B

le complémentaire de F dans E et noté E\F selon
E\F={x | F "inc" E | x "in" E |x "notin" F | A(x):=(x "in" F)=>(x "in" E) }

de sorte que si F "ninc" E alors "nexists" X tel que X= {x | F "inc" E | x "in" E |x "notin" F | A(x):=(x "in" F)=>(x "in" E) }

notation Ø pour désigner l'ensemble vide

l'union A "UNION" B ={x | (x "in" A)+(x "in" B)}

l'intersection A "INTER" B={ x | (x "in" A).(x "in" B)}

Re: Pourquoi je ne crois pas en Dieu.

Posté : 14 août15, 02:57
par vic
humana fragilita a dit : Il quantifie sans quantifier ? Pfou...
Le zéro n'est pas plus une chose qu'une absence de chose , il n'enlève rien et n'ajoute rien , comment pourrait il être une chose ou une absence de chose ?
Il n'est ni production ni annulation .
En plus tu confonds "concept" avec chose , ça la fout mal .zéro est un concept , il n'a pas d'existence autre que relative à un concept .

Re: Pourquoi je ne crois pas en Dieu.

Posté : 14 août15, 02:59
par HumanaFragilita
ultrafiltre2 a écrit :cet imbécile de Hawking ?
Il m'arrive de lire des trucs, des fois je crois rêver. Cette discussion est en train de prendre un tour surréaliste.

Re: Pourquoi je ne crois pas en Dieu.

Posté : 14 août15, 03:00
par vic
En plus tu confonds "concept" avec chose , ça la fout mal .Zéro est un concept , il n'a pas d'existence autre que relative à un concept .
C'est toi qui fait dans le surréalisme .
Un concept n'est ni une chose ni une absence de chose vois tu ?
Vous utilisez des concepts pour en définir des choses , toi et ultra filtre c'est pareil .
Mais en réalité il n'existe pas de choses , il n'existe que des relations , c'est nous qui prenons les choses qui sont de nature impermanentes comme solides .En réalité quand nous conceptualisons nous manions des relations , jamais des choses au sens strict .
Dire que le zéro n'est ni une chose ni une absence de chose , ni être ni non être est juste sur ce point .

Re: Pourquoi je ne crois pas en Dieu.

Posté : 14 août15, 03:10
par indian
HumanaFragilita a écrit :cet imbécile de Hawking ?

Il m'arrive de lire des trucs, des fois je crois rêver. Cette discussion est en train de prendre un tour surréaliste.

C'est vrai que le mot ''con'' aurait été plus approprié... Hawking ne possède tout de même pas toute la con-naissance...
Il connait tout de même bien des choses.

Car imbécile:
Qui est peu capable de raisonner, de comprendre et d’agir judicieusement; Dont les facultés physiques et intellectuelles sont faibles par nature ou par suite des infirmités ou de l’âge; Idiot, stupide, qui manque d’intelligence; Personne qui manque de capacité de compréhension ou qui n’est pas ...

Il me semble que ce ne ressemble pas trop à Hawkins.. du moins de ce que l'on présente de lui dans le dernier film à son sujet... :wink:

Re: Pourquoi je ne crois pas en Dieu.

Posté : 14 août15, 03:12
par ultrafiltre2
HumanaFragilita a écrit :Il m'arrive de lire des trucs, des fois je crois rêver. Cette discussion est en train de prendre un tour surréaliste.
Pas du tout ! tu rêve pas et ici ce forum c'est pas fait non plus pour rêver mais devenir lucide

Vic déclare que Hawking aurai dit telle imbécilité à propos de zéro (le fondement d'un fait physique)

alors qu'en fait (certes je sais qu'il est nul en matière de maths fondamentales -je ne savais pas que c'était à ce point là -

je lui dit que ce personnage est mal placé pour en parler

déjà il devrai connaitre l'axiomatique de Zermelo ce qu'un physicien dans son genre ignore complètement et je lui conseille de venir ici lire ça ci-dessous et qui en plus est complètement éculé depuis un siècle mais je suis sympa ici on est gentil
ultrafiltre2 a écrit :
Alors si il dit ça (et je suis sûr qu'il dit ça mais à sa place je fermerai ma gueule) , c'est tout simplement qu'il dit une grosse connerie et qu'il ne faudrait pas gober sans digérer Zermelo
En plus je ne sais même pas de quoi vous parlez dans ce topic (en plus de ça je dois venir ce soir pour le topic de CDL et j'ai pas trop de temps là mais là vite fait ):
Je veux bien qu'il dise cela mais s'il dit cela trouve moi le modèle impossible qu'il emploierai en disant que la physique utilise le zero comme modèle de fondement de la théorie du Big Bang en se basant sur ce que dit Zermelo àpropos du zero

Vic je devais venir ce soir pour l'autre sujet,il te reste plus que très peu de temps pour te préparer à mon post de ce soir sur le topic de CDL

D'abord si on parle de zero c'est qu'on parle d'un ensemble et que zero est son élément et je concède que là l'ensemble vide n'est pas le zero dont parlerai Hawkings -qui n'a jamais rien compris aux maths fondamentales ceci dit-
Zermelo ne part pas d'une définition du concept d'ensemble mais part d'un moyen de construction qui permet de donner des propriétés qui caractérisent ce concept

On parle d'un objet appelé "ensemble" dont on sait qu'il peut posséder des éléments (ici le concept d'appartenance : des éléments qui appartiennent à un ensemble) et ces éléments sont eux mêmes des ensembles

cela il le décrète!

au passage sans même définir le vocabulaire qu'il emploie :
ensemble : on sait pas ce que c'est
concept d'appartenance : on sait pas ce que c'est
la seule chose qu'on sait : puisque c'est lui qui le décrète :
un élément d'un ensemble est lui-même un ensemble


Soit un ensemble noté A si on dit que:
a "appartiens à" A et on note a "in" A de l'anglais

autre symbole (voir liste en vert ci-dessous) on notera
x "notin" E pour dire que l'élément x n'appartiens pas à E

Pour tout ensemble A , la quantité de ses éléments est noté Card (A)

Lorsqu'un ensemble A ne possède qu'un seul et unique élément on dit que l'ensemble a est un singleton et dans ce cas on obtiens Card (A)=1

pour l'écriture descriptive des éléments d'un ensemble A si on note A={a1,a2,...,an } cela signifie que les "ai" (avec i de 1 à n) appartiennent à l'ensemble A

de plus en écrivant A={a1,a2,...,an } on vérifie l'équivalence logique : ( ai=aj )<=> ( i=j )
ce qui signifie que obligatoirement si i et j sont différent alors ai et aj sont deux éléments distincts de l'ensemble A

Ainsi Zermelo définit six axiomes

(cela va nécessiter des explications mais je les écrits déjà)

premier axiome:axiome d'extentionnalité
qui stipule que deux ensembles A et B sont égaux si et seulement si ils ont les mêmes éléments (on rappelle que l'élément d'un ensemble est toujours lui même un ensemble)

deuxième axiome:Shéma d'axiomes de compréhension non restreint
qui stipule (bon cela va nécessiter quelques explications ) que si P est un prédicat de rang quelconque mais libre en x et si A est un ensemble alors l'ensemble des éléments de A pour lesquels P est vrai est aussi un ensemble
on le note {x|x "in" A|P(x)}
(rappel) la notation x "in" A signifiant que l'élément x appartiens à l'ensemble A

troisième axiome:axiome de la paire
qui stipule que si A et B sont des ensembles alors il existe un nouvel ensemble qui contiens comme uniques éléments A et B
on note {A,B} ce nouvel ensemble

quatrième axiome:axiome de l'union
qui stipule que si A et B sont des ensembles alors l'ensemble A "UNION" B = {x|x "in" A + |x "in" B }
rappel -de l'apparté écrit en vert : + qui signifie le symbole du "or" en logique
P + Q = R est aussi une proposition qui est toujours vraie sauf si uniquement P et Q sont faux

cinquième axiome:axiome de puissance
qui stipule que pour tout ensemble A alors il existe un ensemble noté P(A)
-attention à ne pas confondre avec la notation précédente concernant les prédicats voir deuxième axiome-
dont noté P(A) et qui possède pour éléments tous les sous ensembles de A (cela va nécessiter des explications)

sixième axiome:axiome de l'infini
l'axiome de l'infini stipule qu'il existe un ensemble contenant l'ensemble vide et le successeur de chacun de ses ensembles
le plus petit des ensembles possédant ces proprietés se nomme |N l'ensemble des entiers naturels
on pose Card (|N)=Aleph_0

______________________________________________________________________

premier axiome:axiome d'extentionnalité
qui stipule que deux ensembles A et B sont égaux si et seulement si ils ont les mêmes éléments (on rappelle que l'élément d'un ensemble est toujours lui même un ensemble)

pour cet axiome là on a pas grand chose à dire sauf qu'on ne peut pas savoir si A=B lorsque A et B sont des ensembles car en fait on ne sait pas ce qui fera que l'on dira que deux ensembles ont les mêmes éléments
ça nous avance pas beaucoup en tout cas pour l'instant
on doit juste se rappeler cette phrase et la tenir pour vraie(comme pour tous les axiomes ceux-ci sont tenus pour vrais)
deux ensembles A et B sont égaux si et seulement si ils ont les mêmes éléments
on prend cet axiome tel qu'il est, à défaut d'en savoir plus , au moins on sait ça (cette phrase)


______________________________________________________________________

deuxième axiome:Shéma d'axiomes de compréhension non restreint
qui stipule que si P est un prédicat de rang quelconque mais libre en x et si A est un ensemble alors l'ensemble des éléments de A pour lesquels P est vrai est aussi un ensemble
on le note {x|x "in" A|P(x)}
(rappel) la notation x "in" A signifiant que l'élément x appartiens à l'ensemble A

là par contre on passe à autre chose : ça demande des explications

en premier lieu : une proposition possède une valeur logique et quand Zermelo a présenté ses axiomes il parlait de la valeur logique d'une proposition qui est en fait l'élément d'un ensemble definit par une algebre de Boole
si l'ensemble sur lequel est construit cet algebre est {0,1} alors dans ce cas les propositions sont soit de valeur 0 (fausses) soit de valeur 1 (vraies)

ATTENTION: ici parler des deux éléments 0 et 1 n'a strictement aucun rapport avec des entiers naturel
ici il s'agit d'une tout autre symbolique: la symbolique donnant une valeur à une proposition (en dehors de ce qu'elle peut dire)
mais en apparté comme on le verra plus loin : dans une algèbre de Boole rien interdit que l'ensemble possède plus de deux éléments mais bon on en reparlera
ici on parle de logique d'ordre zéro qui en fait est le calcul des propositions et de plus binaire : c'est à dire que l'ensemble sur lequel est construit cet algebre, possède que deux éléments

ensuite toujours en ce qui concerne ce deuxième axiome

pour toute proposition P on notera v(P) sa valeur

et de plus quelque soit l'algebre de Boole qui definie la logique d'ordre zéro (binaire ou pas)

lorsque v(P)=0 on dira que P est fausse

lorsque v(P)=1 on dira que P est vraie

en apparté on a vu les connecteurs logiques et d'autres symboles logiques

en ce qui concerne les prédicats

un prédicat P (majuscule ) est une proposition p (minuscule) dans laquelle on stipule par des quantificateurs...

le quantificateur "exists" signifie : "il existe"

et le symbole "nexist" pour signifier "il n'existe pas"

le quantificateur "forall" signifie : "tout" ou plus explicitement "quelque soit"

...donc par des quantificateurs qui s'exercent sur une ou plusieurs variables dites variables liées à ces quantificateurs

que la ou les variables libres , parmis une quantitée de variables fixées par les quantificateurs , vérifient la proposition p

on va prendre un exemple mais avant il faut bien faire attention à distinguer variable liée et variable libre

une variable liée ne possede pas d'identité propre : elle peut être remplacée par n'importe qu'elle autre variable qui n'apparait pas dans une formule

ainsi par exemple

"exists" x,(x<y) est identique à "exists" z,(z<y) en fait la seule variable libre et qui possede une identitee propre c'est y
on peut remplacer x par n'importe qu'elle varible mais pas par y

sachant qu'on a dit que "exists" x,(x<y) et donc que y possede une identitée propre alors il sera interdit de lier y par un quantificateur

car ce "y" est quelque chose possedent une existence concrète contrairement aux variables liées

enfin : le rang d'un prédicat designe la quantité de variables librres qu'il contiens

par exemple : "forall"x<y est un prédicat de rang 1 car il n'y a qu'une seule variable libre (c'est "y")

et pour terminer en ce qui concerne ce deuxieme axiome

on considere la terminologie

"exists"x,A(x) signifie qu'il existe un terme x pour lequel la relation A est vrai (il peut même en exister plusieurs)

"forall"x,A(x) signifie que A est vrai pour tout x

{x|A(x)} est un ensemble par lequel la relation A est vrai pour tous les éléments de cet ensemble

de plus si un element verifie cette relation alors cet élément appartiens à cet ensemble

le concept de l'inclusion
Soient deux ensembles E et F et une relation A(x):=(x "in" F)=>(x "in" E),"forall" x,A(x)
signifie qu'il existe deux ensembles E et F tels que tous les éléments de F appartiennent aussi à l'ensemble E

on notera : F 'inc" E et qui signifie que F est inclus dans E

par le schéma d'axiome de compréhension non restreint (le deuxième axiome) on construit l'ensemble F

que l'on note F={x|A(x):=x "in" F => x "in" E| P:="forall" x,A(x)}

ici P est un prédicat de rang 1 et A(x) la proposition qui doit se vérifier
l'ensemble des éléments de E pour lequel P est vrai est l'ensemble F
on vérifie l'équivalence logique (E=F)<=>(E "inc" F . F "inc" E)

c'est donc à partir du deuxième axiome et avec le concept de l'inclusion qui en découle que le premier axiome prend tout son sens

le premier axiome (axiome d'extentionnalité) disait que A=B si et seulement si A et B ont les mêmes éléments mais on ne savait pas comment cela était vérifiable

à présent on sait que A=B SI ET SEULEMENT SI
A est inclus B et aussi B est inclus dans A

formalisé ici par la notation

(A=B) <=> ((A "inc" B) . (B "inc" A))

et de plus on dispose à présent du premier concept de la théorie des ensembles : celui de l'inclusion

autre symbole
x "neq" y qui signifie x non égal à y



concept de la complémentarité

soient E et F deux ensembles, alors si

E\F est un ensemble que uniquement si F "inc" E , dans le cas contraire E\F n'a aucune signification
attention dire d'un objet maths qu'il n'a aucune signification cela reviens à dire que cet objet là n'a aucun sens
bref il ne possède aucune legitimité d'existence

donc si F "inc" E dans ce cas alors E\F est un ensemble que l'on nomme le complémentaire de F dans E

cet ensemble se construit selon

E\F={x | F "inc" E | x "in" E |x "notin" F | A(x):=(x "in" F)=>(x "in" E) }

cet ensemble existe que uniquement si F est inclus dans E dans le cas contraire il est absurde et ne possède aucune légitimité d'existence

en fait E\F désigne l'ensemble des éléments de E qui n'appartiennent pas à F

théorême de l'ensemble vide

Soit E un ensemble, par conséquent comme on l'a vu dans le premier concept celui de l'inclusion on vérifie donc E "inc" E
et aussi comme on l'a vu dans le deuxième concept celui de la complémentarité E\E existe

or quelque soit un élément qui serait dans E\E alors il faudrait qu'il soit à la fois dans E et à la fois abscent de E

ce qui est impossible

il résulte donc que E\E est un ensemble vide

de plus si E est lui même vide on vérifie quand même E "inc" E

notation Ø pour désigner l'ensemble vide



théorême de l'unicité

Soit E un ensemble alors si x "in" E et y "in" E tels que x=y on démontre que x et y sont un seul et même élément de E

admettons que E={x,y} "neq" {x} tandis que x=y
posons F={y} on vérifie donc F "inc" E de sorte que E\F={x}
mais étant donné que x=y il en résulte donc que E\F={y} or on a dit que y "in" F ce qui est absurde



le théorême de la totalité

ce théorême démontre une chose très importante : il n'existe pas d'ensemble de tous les ensembles

rien interdit dans l'axiomatique de Zermelo qu'il puisse exister des ensembles (un peu bizarres certes mais c'est un jugement de valeur que la notion de bizarrerie) que des ensembles puissent s'appartenirs à eux mêmes
E est un ensemble et si E s'appartiens à lui même alors E "in" E

cependant on peut demontrer que Ø "notin" Ø
en effet car si Ø est vide il ne peut rien contenir

il résulte donc que dans l'axiomatique de Zermelo il existe deux catégories d'ensembles

les ensembles qui s'appartiennent à eux mêmes et sont de types E "in" E et les autres qui sont de types E "notin" E

on démontre qu'il n'existe pas d'ensemble E tel que pour tout ensemble F on verifie F "in" E

en effet si cet ensemble existe alors il est tel que "forall" K , un ensemble alors E "notin" K et K "in" E

or si E est de type E "in" E alors il existe K=E tel que E "in" (K=E) or il faut que E "notin " K

si E est de type E "notin" E alors il existe K=E tel que E=K "notin" E or il faut que K "in" E


troisième axiome:axiome de la paire

Si A et B sont des ensembles alors il existe un nouvel ensemble qui contiens comme unique éléments : A et B

on le note {A,B}

par le théorême de l'unicité alors si de plus A=B on obtiens comme nouvel ensemble l'ensemble {A}

mais attention ici A "neq" {A} ce ne sont pas du tout les mêmes ensembles


quatrième axiome:axiome de l'union
Si A et B sont des ensembles, alors A "UNION" B ={x | (x "in" A)+(x "in" B)} existe
cet opérateur "UNION" est associatif de sorte que
( A "UNION" B) "UNION" C = A "UNION" (B "UNION" C )
et on peut noter
( A "UNION" B) "UNION" C = A "UNION" B "UNION" C
de plus il est commutatif de sorte que
A "UNION" B=B "UNION" A

concept de l'intersection
on note A "INTER" B={ x | (x "in" A).(x "in" B)}
l'opérateur "INTER" est associatif et commutatif
concept d'entier naturel
On construit tout entier naturel en construisant un ensemble fini dont le cardinal désigne cet entier

par le deuxième axiome on a vu le concept d'ensemble vide Ø ainsi Card(Ø)=0
par le troisième axiome on peut construire l'ensemble {Ø} ainsi Card ({Ø})=1
par le troisième axiome on peut construire l'ensemble {Ø,{Ø}} ainsi Card ({Ø,{Ø}})=2

par le troisième axiome on construit les ensembles {Ø},{{Ø}},{{Ø,{Ø}}}
par le quatrième axiome on construit l'ensemble {Ø} "UNION" {{Ø}} "UNION" {{Ø,{Ø}}}={Ø,{Ø},{Ø,{Ø}}}
ainsi Card ({Ø,{Ø},{Ø,{Ø}}})=3
on poursuit en utilisant le troisième axiome en construisant les ensembles
{Ø},{{Ø}},{{Ø,{Ø}}},{{Ø,{Ø},{Ø,{Ø}}}} et on utilise le quatrième axiome pour obtenir l'ensemble de cardinal 4

et ainsi de suite...

cinquième axiome:axiome de puissance

pour tout ensemble A il existe un ensemble noté P(A), qui possède pour éléments tous les sous ensembles de A
autrement dit P(A)={X | X "inc" A }
pour un ensemble A de cardinal n donc pour Card(A)=n alors par recurrence on démontre que Card (P(A))=2^n
par exemple
pour A=Ø donc Card (A)=0 alors P(A)={Ø} et donc Card (P(A))=1
pour A={a_1} alors P(A)={Ø,{a_1}} et donc Card (P(A))=2
pour A={a_1,a_2} alors P(A)={Ø,{a_1},{a_2},{a_1,a_2}} et donc Card (P(A))=4
pour A={a_1,a_2,a_3} alors P(A)={Ø,{a_1},{a_2},{a_3},{a_1,a_2},{a_1,a_3},{a_2,a_3},A} et donc Card (P(A))=8
et ainsi de suite par récurrence

concept d'algebre
Soit X un ensemble et soit P(X) l'ensemble des ses parties
alors un sous ensemble K de P(X)est appelé une algebre (ou algebre de parties de X) si on verifie
Ø "in" K
A "in" K => X\A "in" K*a,B "in" K => A "UNION" B "in" K

notion superficielle d'algebre de Boole
on entre pas dans les détail ici car il manque de très nombreux concepts
une algebre de Boole se definie dans P(E) pour tout e non vide
l'élément 0 de cet algebre correspond à l'element Ø de P(E)
l'élément 1 de cet algebre correspond à l'element E de P(E)
la loi + de cet algebre correspond à la loi "UNION"
la loi . de cet algebre correspond à la loi "INTER"
la bijection \x correspond à l'opération E\x qui donne le complémentaire de x dans E

sixième axiome:axiome de l'infini
si X est un ensemble alors on définit X^+ le successeur de X comme étant X "UNION" {X}
ceci reste possible par le troisième et quatrième axiome
et par eux on a construit les entiers naturels

l'axiome de l'infini stipule qu'il existe un ensemble contenant l'ensemble vide et le successeur de chacun de ses ensembles
le plus petit des ensembles possédant ces proprietés se nomme |N l'ensemble des entiers naturels
on pose Card (|N)=Aleph_0 est un infini actuel


les sept symboles suivants sont des connecteurs logiques en logique binaire d'ordre zéro(je m'explique ici sur cette terminologie)
<=> qui signifie le symbole d'équivalence logique
=> qui signifie le symbole de l'implication logique
. qui signifie le symbole du "AND" en logique
+ qui signifie le symbole du "OR" en logique
++ qui signifie le symbole du "lor" ou "XOR" en logique dit "OR" exclusif
T qui signifie le symbole du connecteur donnant toujours un résultat vrai
┴ qui signifie le symbole du connecteur donnant toujours un résultat faux

par ailleurs on considère aussi le symbole :
¬ qui signifie le symbole de la négation d'une proposition

en logique binaire d'ordre zéro on considère toute proposition P est une déclaration possédant une valeur de vérité :
soit VRAI, soit FAUSSE
pour une proposition P on notera v(P) sa valeur de vérité
si P est Vrai on notera v(P)=1
si P est fausse on notera v(P)=0

¬ qui signifie le symbole de la négation d'une proposition
si P est Vrai alors dans ce cas ¬ P est une proposition fausse
en fait ¬ P=Q ici P et Q sont des propositions et si P est Vrai alors dans ce cas Q est une proposition fausse car ici ¬P=Q

de même si P est Fausse alors dans ce cas ¬ P est une proposition vraie

calcul des proposition en logique binaire d'ordre zéro
P et Q sont des propositions alors :
P <=> Q = R est aussi une proposition qui est toujours vraie si et seulement si P et Q possèdent la même valeur de vérité
P => Q = R est aussi une proposition qui est toujours vraie sauf si uniquement P est vrai tandis que Q est fausse
P . Q = R est aussi une proposition qui est toujours fausse sauf si uniquement P et Q sont vraies
P + Q = R est aussi une proposition qui est toujours vraie sauf si uniquement P et Q sont faux
P ++ Q = R est aussi une proposition qui est toujours vraie sauf si uniquement P et Q possèdent la même valeur de vérité
P T Q = R est aussi une proposition qui est toujours vraie quelques soient P et Q
P ┴ Q = R est aussi une proposition qui est toujours fausse quelques soient P et Q

a "appartiens à" A et on note a "in" A de l'anglais

la non appartenance notée a "notin" A

le quantificateur "exists" signifie : "il existe"

la non existence notée "nexists"

le quantificateur "forall" signifie : "tout" ou plus explicitement "quelque soit"

:= ce symbole dit que ce qui s'y trouve à gauche est defini par ce qui s'y trouve à droite
un peu comme pour u n dictionnaire ou pour un mot
maison := définition du mot maison

F "inc" E et qui signifie que F est inclus dans E
la non inclusion notée F "ninc" E


égalité de deux ensembles A=B
A=B SI ET SEULEMENT SI
A est inclus B et aussi B est inclus dans A

formalisé ici par la notation

(A=B) <=> ((A "inc" B) . (B "inc" A))

la non égalité de deux ensembles A "neq" B

le complémentaire de F dans E et noté E\F selon
E\F={x | F "inc" E | x "in" E |x "notin" F | A(x):=(x "in" F)=>(x "in" E) }

de sorte que si F "ninc" E alors "nexists" X tel que X= {x | F "inc" E | x "in" E |x "notin" F | A(x):=(x "in" F)=>(x "in" E) }

notation Ø pour désigner l'ensemble vide

l'union A "UNION" B ={x | (x "in" A)+(x "in" B)}

l'intersection A "INTER" B={ x | (x "in" A).(x "in" B)}