Page 4 sur 5

Re: Pourquoi je ne crois pas en Dieu.

Posté : 14 août15, 05:35
par vic
Indian a dit :L'objet ou la condition que je tente de ''voir'' avec une caméra infra-rouge... elle n'existe pas pour celui qui observe dans le spectre visible...
Bien que ca existe... mais on ne le ''sait'' pas ...
Vous ne voyez pas une chose mais imaginez la chose de la façon dont vous la conceptualisez .
Bref, vous confondez toujours concept et chose .
Vous confondez la façon dont vous conceptualisez vous la chose avec l'objet .
On ne peut pas mesurer sans conceptualiser l'objet de toutes façons .
C'est pour ça que je dis que seule existe la relation entre vous et la chose et pas la chose en elle même .

Re: Pourquoi je ne crois pas en Dieu.

Posté : 14 août15, 05:40
par indian
vic a écrit : Ca change rien au fait que vous ne voyez pas une chose mais votre perception de la chose à travers votre outil de mesure et de vision selon votre conceptualisation personnelle .
Bref, vous confondez toujours concept et chose .
Vous confondez la façon dont vous conceptualisez vous la chose avec l'objet .

Confondu?... surement...

On confond toujours ce que l'on perçoit par le sensibilité de nos outils de mesure: sens, raison...
Vous me direz comment faire autrement...?

Re: Pourquoi je ne crois pas en Dieu.

Posté : 14 août15, 05:45
par vic
Indian a dit :Confondu?... surement...

On confond toujours ce que l'on perçoit par le sensibilité de nos outils de mesure: sens, raison...
Vous me direz comment faire autrement...?
Déjà en en prenant conscience et en arrêtant de prôner que ce que l'on voit ou conçoit est l'égal de la vérité ou de la réalité comme vous faites si souvent .
votre monde ressemble à quelque chose de géocentrique .
Les choses existent de telle façon puisque vous en décidez , oui mais êtes vous si certains ?
Moi le match est toujours de zéro , en ce qui concerne la réalité quand j'y pense , comme zéro certitude .
Le zéro est pratique il n'a pas besoin de trancher ou de décider , il n'a même pas nécessité d'être ou de ne pas être ou de déterminer qui perd ou qui gagne .

Re: Pourquoi je ne crois pas en Dieu.

Posté : 14 août15, 05:54
par indian
vic a écrit :Déjà en en prenant conscience et en arrêtant de prôner que ce que l'on voit ou conçoit est l'égal de la vérité ou de la réalité comme vous faites si souvent .
votre monde ressemble à quelque chose de géocentrique .
Les choses existent de telle façon puisque vous en décidez , oui mais êtes vous si certains ?
Moi le match est toujours de zéro , en ce qui concerne la réalité quand j'y pense .

C'est vrai? C'est ce que vous percevez que je fais?
Vous percevez que je laisse croire que ce que je sais, perçois, conçois et la vérité?
Désolé... nullement cette intention...
Je tente toujours de ne parler que que MA vérité. Que mes sens. Que mes perceptions.
Mais c'est vrai...suis-je certain que je penses tenter de rêver d'y participer?

Je ne le ferai pas, un trop grand respect pour vous...mais pourrais-je copier-coller vos mots ci haut?
Surtout le bout... '' mais êtes vous certain?'' Que ce que vous percevez est ma réalité?

Re: Pourquoi je ne crois pas en Dieu.

Posté : 14 août15, 05:57
par ultrafiltre2
[Edit]

Re: Pourquoi je ne crois pas en Dieu.

Posté : 14 août15, 05:58
par indian
ultrafiltre2 a écrit :t'es un trou du cul Indian
Un funk?

mais Chantallo utilise des mots bien plus dure à mon endroit... si jamais l'inspiration vous manque.
Et elle n'on plus ne me connait pas.

Re: Pourquoi je ne crois pas en Dieu.

Posté : 14 août15, 06:00
par ultrafiltre2
[Edit]
Je veux bien qu'il dise cela mais s'il dit cela trouve moi le modèle impossible qu'il emploierai en disant que la physique utilise le zero comme modèle de fondement de la théorie du Big Bang en se basant sur ce que dit Zermelo àpropos du zero

Vic je devais venir ce soir pour l'autre sujet,il te reste plus que très peu de temps pour te préparer à mon post de ce soir sur le topic de CDL

D'abord si on parle de zero c'est qu'on parle d'un ensemble et que zero est son élément et je concède que là l'ensemble vide n'est pas le zero dont parlerai Hawkings -qui n'a jamais rien compris aux maths fondamentales ceci dit-
Zermelo ne part pas d'une définition du concept d'ensemble mais part d'un moyen de construction qui permet de donner des propriétés qui caractérisent ce concept

On parle d'un objet appelé "ensemble" dont on sait qu'il peut posséder des éléments (ici le concept d'appartenance : des éléments qui appartiennent à un ensemble) et ces éléments sont eux mêmes des ensembles

cela il le décrète!

au passage sans même définir le vocabulaire qu'il emploie :
ensemble : on sait pas ce que c'est
concept d'appartenance : on sait pas ce que c'est
la seule chose qu'on sait : puisque c'est lui qui le décrète :
un élément d'un ensemble est lui-même un ensemble


Soit un ensemble noté A si on dit que:
a "appartiens à" A et on note a "in" A de l'anglais

autre symbole (voir liste en vert ci-dessous) on notera
x "notin" E pour dire que l'élément x n'appartiens pas à E

Pour tout ensemble A , la quantité de ses éléments est noté Card (A)

Lorsqu'un ensemble A ne possède qu'un seul et unique élément on dit que l'ensemble a est un singleton et dans ce cas on obtiens Card (A)=1

pour l'écriture descriptive des éléments d'un ensemble A si on note A={a1,a2,...,an } cela signifie que les "ai" (avec i de 1 à n) appartiennent à l'ensemble A

de plus en écrivant A={a1,a2,...,an } on vérifie l'équivalence logique : ( ai=aj )<=> ( i=j )
ce qui signifie que obligatoirement si i et j sont différent alors ai et aj sont deux éléments distincts de l'ensemble A

Ainsi Zermelo définit six axiomes

(cela va nécessiter des explications mais je les écrits déjà)

premier axiome:axiome d'extentionnalité
qui stipule que deux ensembles A et B sont égaux si et seulement si ils ont les mêmes éléments (on rappelle que l'élément d'un ensemble est toujours lui même un ensemble)

deuxième axiome:Shéma d'axiomes de compréhension non restreint
qui stipule (bon cela va nécessiter quelques explications ) que si P est un prédicat de rang quelconque mais libre en x et si A est un ensemble alors l'ensemble des éléments de A pour lesquels P est vrai est aussi un ensemble
on le note {x|x "in" A|P(x)}
(rappel) la notation x "in" A signifiant que l'élément x appartiens à l'ensemble A

troisième axiome:axiome de la paire
qui stipule que si A et B sont des ensembles alors il existe un nouvel ensemble qui contiens comme uniques éléments A et B
on note {A,B} ce nouvel ensemble

quatrième axiome:axiome de l'union
qui stipule que si A et B sont des ensembles alors l'ensemble A "UNION" B = {x|x "in" A + |x "in" B }
rappel -de l'apparté écrit en vert : + qui signifie le symbole du "or" en logique
P + Q = R est aussi une proposition qui est toujours vraie sauf si uniquement P et Q sont faux

cinquième axiome:axiome de puissance
qui stipule que pour tout ensemble A alors il existe un ensemble noté P(A)
-attention à ne pas confondre avec la notation précédente concernant les prédicats voir deuxième axiome-
dont noté P(A) et qui possède pour éléments tous les sous ensembles de A (cela va nécessiter des explications)

sixième axiome:axiome de l'infini
l'axiome de l'infini stipule qu'il existe un ensemble contenant l'ensemble vide et le successeur de chacun de ses ensembles
le plus petit des ensembles possédant ces proprietés se nomme |N l'ensemble des entiers naturels
on pose Card (|N)=Aleph_0

______________________________________________________________________

premier axiome:axiome d'extentionnalité
qui stipule que deux ensembles A et B sont égaux si et seulement si ils ont les mêmes éléments (on rappelle que l'élément d'un ensemble est toujours lui même un ensemble)

pour cet axiome là on a pas grand chose à dire sauf qu'on ne peut pas savoir si A=B lorsque A et B sont des ensembles car en fait on ne sait pas ce qui fera que l'on dira que deux ensembles ont les mêmes éléments
ça nous avance pas beaucoup en tout cas pour l'instant
on doit juste se rappeler cette phrase et la tenir pour vraie(comme pour tous les axiomes ceux-ci sont tenus pour vrais)
deux ensembles A et B sont égaux si et seulement si ils ont les mêmes éléments
on prend cet axiome tel qu'il est, à défaut d'en savoir plus , au moins on sait ça (cette phrase)


______________________________________________________________________

deuxième axiome:Shéma d'axiomes de compréhension non restreint
qui stipule que si P est un prédicat de rang quelconque mais libre en x et si A est un ensemble alors l'ensemble des éléments de A pour lesquels P est vrai est aussi un ensemble
on le note {x|x "in" A|P(x)}
(rappel) la notation x "in" A signifiant que l'élément x appartiens à l'ensemble A

là par contre on passe à autre chose : ça demande des explications

en premier lieu : une proposition possède une valeur logique et quand Zermelo a présenté ses axiomes il parlait de la valeur logique d'une proposition qui est en fait l'élément d'un ensemble definit par une algebre de Boole
si l'ensemble sur lequel est construit cet algebre est {0,1} alors dans ce cas les propositions sont soit de valeur 0 (fausses) soit de valeur 1 (vraies)

ATTENTION: ici parler des deux éléments 0 et 1 n'a strictement aucun rapport avec des entiers naturel
ici il s'agit d'une tout autre symbolique: la symbolique donnant une valeur à une proposition (en dehors de ce qu'elle peut dire)
mais en apparté comme on le verra plus loin : dans une algèbre de Boole rien interdit que l'ensemble possède plus de deux éléments mais bon on en reparlera
ici on parle de logique d'ordre zéro qui en fait est le calcul des propositions et de plus binaire : c'est à dire que l'ensemble sur lequel est construit cet algebre, possède que deux éléments

ensuite toujours en ce qui concerne ce deuxième axiome

pour toute proposition P on notera v(P) sa valeur

et de plus quelque soit l'algebre de Boole qui definie la logique d'ordre zéro (binaire ou pas)

lorsque v(P)=0 on dira que P est fausse

lorsque v(P)=1 on dira que P est vraie

en apparté on a vu les connecteurs logiques et d'autres symboles logiques

en ce qui concerne les prédicats

un prédicat P (majuscule ) est une proposition p (minuscule) dans laquelle on stipule par des quantificateurs...

le quantificateur "exists" signifie : "il existe"

et le symbole "nexist" pour signifier "il n'existe pas"

le quantificateur "forall" signifie : "tout" ou plus explicitement "quelque soit"

...donc par des quantificateurs qui s'exercent sur une ou plusieurs variables dites variables liées à ces quantificateurs

que la ou les variables libres , parmis une quantitée de variables fixées par les quantificateurs , vérifient la proposition p

on va prendre un exemple mais avant il faut bien faire attention à distinguer variable liée et variable libre

une variable liée ne possede pas d'identité propre : elle peut être remplacée par n'importe qu'elle autre variable qui n'apparait pas dans une formule

ainsi par exemple

"exists" x,(x<y) est identique à "exists" z,(z<y) en fait la seule variable libre et qui possede une identitee propre c'est y
on peut remplacer x par n'importe qu'elle varible mais pas par y

sachant qu'on a dit que "exists" x,(x<y) et donc que y possede une identitée propre alors il sera interdit de lier y par un quantificateur

car ce "y" est quelque chose possedent une existence concrète contrairement aux variables liées

enfin : le rang d'un prédicat designe la quantité de variables librres qu'il contiens

par exemple : "forall"x<y est un prédicat de rang 1 car il n'y a qu'une seule variable libre (c'est "y")

et pour terminer en ce qui concerne ce deuxieme axiome

on considere la terminologie

"exists"x,A(x) signifie qu'il existe un terme x pour lequel la relation A est vrai (il peut même en exister plusieurs)

"forall"x,A(x) signifie que A est vrai pour tout x

{x|A(x)} est un ensemble par lequel la relation A est vrai pour tous les éléments de cet ensemble

de plus si un element verifie cette relation alors cet élément appartiens à cet ensemble

le concept de l'inclusion
Soient deux ensembles E et F et une relation A(x):=(x "in" F)=>(x "in" E),"forall" x,A(x)
signifie qu'il existe deux ensembles E et F tels que tous les éléments de F appartiennent aussi à l'ensemble E

on notera : F 'inc" E et qui signifie que F est inclus dans E

par le schéma d'axiome de compréhension non restreint (le deuxième axiome) on construit l'ensemble F

que l'on note F={x|A(x):=x "in" F => x "in" E| P:="forall" x,A(x)}

ici P est un prédicat de rang 1 et A(x) la proposition qui doit se vérifier
l'ensemble des éléments de E pour lequel P est vrai est l'ensemble F
on vérifie l'équivalence logique (E=F)<=>(E "inc" F . F "inc" E)

c'est donc à partir du deuxième axiome et avec le concept de l'inclusion qui en découle que le premier axiome prend tout son sens

le premier axiome (axiome d'extentionnalité) disait que A=B si et seulement si A et B ont les mêmes éléments mais on ne savait pas comment cela était vérifiable

à présent on sait que A=B SI ET SEULEMENT SI
A est inclus B et aussi B est inclus dans A

formalisé ici par la notation

(A=B) <=> ((A "inc" B) . (B "inc" A))

et de plus on dispose à présent du premier concept de la théorie des ensembles : celui de l'inclusion

autre symbole
x "neq" y qui signifie x non égal à y



concept de la complémentarité

soient E et F deux ensembles, alors si

E\F est un ensemble que uniquement si F "inc" E , dans le cas contraire E\F n'a aucune signification
attention dire d'un objet maths qu'il n'a aucune signification cela reviens à dire que cet objet là n'a aucun sens
bref il ne possède aucune legitimité d'existence

donc si F "inc" E dans ce cas alors E\F est un ensemble que l'on nomme le complémentaire de F dans E

cet ensemble se construit selon

E\F={x | F "inc" E | x "in" E |x "notin" F | A(x):=(x "in" F)=>(x "in" E) }

cet ensemble existe que uniquement si F est inclus dans E dans le cas contraire il est absurde et ne possède aucune légitimité d'existence

en fait E\F désigne l'ensemble des éléments de E qui n'appartiennent pas à F

théorême de l'ensemble vide

Soit E un ensemble, par conséquent comme on l'a vu dans le premier concept celui de l'inclusion on vérifie donc E "inc" E
et aussi comme on l'a vu dans le deuxième concept celui de la complémentarité E\E existe

or quelque soit un élément qui serait dans E\E alors il faudrait qu'il soit à la fois dans E et à la fois abscent de E

ce qui est impossible

il résulte donc que E\E est un ensemble vide

de plus si E est lui même vide on vérifie quand même E "inc" E

notation Ø pour désigner l'ensemble vide



théorême de l'unicité

Soit E un ensemble alors si x "in" E et y "in" E tels que x=y on démontre que x et y sont un seul et même élément de E

admettons que E={x,y} "neq" {x} tandis que x=y
posons F={y} on vérifie donc F "inc" E de sorte que E\F={x}
mais étant donné que x=y il en résulte donc que E\F={y} or on a dit que y "in" F ce qui est absurde



le théorême de la totalité

ce théorême démontre une chose très importante : il n'existe pas d'ensemble de tous les ensembles

rien interdit dans l'axiomatique de Zermelo qu'il puisse exister des ensembles (un peu bizarres certes mais c'est un jugement de valeur que la notion de bizarrerie) que des ensembles puissent s'appartenirs à eux mêmes
E est un ensemble et si E s'appartiens à lui même alors E "in" E

cependant on peut demontrer que Ø "notin" Ø
en effet car si Ø est vide il ne peut rien contenir

il résulte donc que dans l'axiomatique de Zermelo il existe deux catégories d'ensembles

les ensembles qui s'appartiennent à eux mêmes et sont de types E "in" E et les autres qui sont de types E "notin" E

on démontre qu'il n'existe pas d'ensemble E tel que pour tout ensemble F on verifie F "in" E

en effet si cet ensemble existe alors il est tel que "forall" K , un ensemble alors E "notin" K et K "in" E

or si E est de type E "in" E alors il existe K=E tel que E "in" (K=E) or il faut que E "notin " K

si E est de type E "notin" E alors il existe K=E tel que E=K "notin" E or il faut que K "in" E


troisième axiome:axiome de la paire

Si A et B sont des ensembles alors il existe un nouvel ensemble qui contiens comme unique éléments : A et B

on le note {A,B}

par le théorême de l'unicité alors si de plus A=B on obtiens comme nouvel ensemble l'ensemble {A}

mais attention ici A "neq" {A} ce ne sont pas du tout les mêmes ensembles


quatrième axiome:axiome de l'union
Si A et B sont des ensembles, alors A "UNION" B ={x | (x "in" A)+(x "in" B)} existe
cet opérateur "UNION" est associatif de sorte que
( A "UNION" B) "UNION" C = A "UNION" (B "UNION" C )
et on peut noter
( A "UNION" B) "UNION" C = A "UNION" B "UNION" C
de plus il est commutatif de sorte que
A "UNION" B=B "UNION" A

concept de l'intersection
on note A "INTER" B={ x | (x "in" A).(x "in" B)}
l'opérateur "INTER" est associatif et commutatif
concept d'entier naturel
On construit tout entier naturel en construisant un ensemble fini dont le cardinal désigne cet entier

par le deuxième axiome on a vu le concept d'ensemble vide Ø ainsi Card(Ø)=0
par le troisième axiome on peut construire l'ensemble {Ø} ainsi Card ({Ø})=1
par le troisième axiome on peut construire l'ensemble {Ø,{Ø}} ainsi Card ({Ø,{Ø}})=2

par le troisième axiome on construit les ensembles {Ø},{{Ø}},{{Ø,{Ø}}}
par le quatrième axiome on construit l'ensemble {Ø} "UNION" {{Ø}} "UNION" {{Ø,{Ø}}}={Ø,{Ø},{Ø,{Ø}}}
ainsi Card ({Ø,{Ø},{Ø,{Ø}}})=3
on poursuit en utilisant le troisième axiome en construisant les ensembles
{Ø},{{Ø}},{{Ø,{Ø}}},{{Ø,{Ø},{Ø,{Ø}}}} et on utilise le quatrième axiome pour obtenir l'ensemble de cardinal 4

et ainsi de suite...

cinquième axiome:axiome de puissance

pour tout ensemble A il existe un ensemble noté P(A), qui possède pour éléments tous les sous ensembles de A
autrement dit P(A)={X | X "inc" A }
pour un ensemble A de cardinal n donc pour Card(A)=n alors par recurrence on démontre que Card (P(A))=2^n
par exemple
pour A=Ø donc Card (A)=0 alors P(A)={Ø} et donc Card (P(A))=1
pour A={a_1} alors P(A)={Ø,{a_1}} et donc Card (P(A))=2
pour A={a_1,a_2} alors P(A)={Ø,{a_1},{a_2},{a_1,a_2}} et donc Card (P(A))=4
pour A={a_1,a_2,a_3} alors P(A)={Ø,{a_1},{a_2},{a_3},{a_1,a_2},{a_1,a_3},{a_2,a_3},A} et donc Card (P(A))=8
et ainsi de suite par récurrence

concept d'algebre
Soit X un ensemble et soit P(X) l'ensemble des ses parties
alors un sous ensemble K de P(X)est appelé une algebre (ou algebre de parties de X) si on verifie
Ø "in" K
A "in" K => X\A "in" K*a,B "in" K => A "UNION" B "in" K

notion superficielle d'algebre de Boole
on entre pas dans les détail ici car il manque de très nombreux concepts
une algebre de Boole se definie dans P(E) pour tout e non vide
l'élément 0 de cet algebre correspond à l'element Ø de P(E)
l'élément 1 de cet algebre correspond à l'element E de P(E)
la loi + de cet algebre correspond à la loi "UNION"
la loi . de cet algebre correspond à la loi "INTER"
la bijection \x correspond à l'opération E\x qui donne le complémentaire de x dans E

sixième axiome:axiome de l'infini
si X est un ensemble alors on définit X^+ le successeur de X comme étant X "UNION" {X}
ceci reste possible par le troisième et quatrième axiome
et par eux on a construit les entiers naturels

l'axiome de l'infini stipule qu'il existe un ensemble contenant l'ensemble vide et le successeur de chacun de ses ensembles
le plus petit des ensembles possédant ces proprietés se nomme |N l'ensemble des entiers naturels
on pose Card (|N)=Aleph_0 est un infini actuel


les sept symboles suivants sont des connecteurs logiques en logique binaire d'ordre zéro(je m'explique ici sur cette terminologie)
<=> qui signifie le symbole d'équivalence logique
=> qui signifie le symbole de l'implication logique
. qui signifie le symbole du "AND" en logique
+ qui signifie le symbole du "OR" en logique
++ qui signifie le symbole du "lor" ou "XOR" en logique dit "OR" exclusif
T qui signifie le symbole du connecteur donnant toujours un résultat vrai
┴ qui signifie le symbole du connecteur donnant toujours un résultat faux

par ailleurs on considère aussi le symbole :
¬ qui signifie le symbole de la négation d'une proposition

en logique binaire d'ordre zéro on considère toute proposition P est une déclaration possédant une valeur de vérité :
soit VRAI, soit FAUSSE
pour une proposition P on notera v(P) sa valeur de vérité
si P est Vrai on notera v(P)=1
si P est fausse on notera v(P)=0

¬ qui signifie le symbole de la négation d'une proposition
si P est Vrai alors dans ce cas ¬ P est une proposition fausse
en fait ¬ P=Q ici P et Q sont des propositions et si P est Vrai alors dans ce cas Q est une proposition fausse car ici ¬P=Q

de même si P est Fausse alors dans ce cas ¬ P est une proposition vraie

calcul des proposition en logique binaire d'ordre zéro
P et Q sont des propositions alors :
P <=> Q = R est aussi une proposition qui est toujours vraie si et seulement si P et Q possèdent la même valeur de vérité
P => Q = R est aussi une proposition qui est toujours vraie sauf si uniquement P est vrai tandis que Q est fausse
P . Q = R est aussi une proposition qui est toujours fausse sauf si uniquement P et Q sont vraies
P + Q = R est aussi une proposition qui est toujours vraie sauf si uniquement P et Q sont faux
P ++ Q = R est aussi une proposition qui est toujours vraie sauf si uniquement P et Q possèdent la même valeur de vérité
P T Q = R est aussi une proposition qui est toujours vraie quelques soient P et Q
P ┴ Q = R est aussi une proposition qui est toujours fausse quelques soient P et Q

a "appartiens à" A et on note a "in" A de l'anglais

la non appartenance notée a "notin" A

le quantificateur "exists" signifie : "il existe"

la non existence notée "nexists"

le quantificateur "forall" signifie : "tout" ou plus explicitement "quelque soit"

:= ce symbole dit que ce qui s'y trouve à gauche est defini par ce qui s'y trouve à droite
un peu comme pour u n dictionnaire ou pour un mot
maison := définition du mot maison

F "inc" E et qui signifie que F est inclus dans E
la non inclusion notée F "ninc" E


égalité de deux ensembles A=B
A=B SI ET SEULEMENT SI
A est inclus B et aussi B est inclus dans A

formalisé ici par la notation

(A=B) <=> ((A "inc" B) . (B "inc" A))

la non égalité de deux ensembles A "neq" B

le complémentaire de F dans E et noté E\F selon
E\F={x | F "inc" E | x "in" E |x "notin" F | A(x):=(x "in" F)=>(x "in" E) }

de sorte que si F "ninc" E alors "nexists" X tel que X= {x | F "inc" E | x "in" E |x "notin" F | A(x):=(x "in" F)=>(x "in" E) }

notation Ø pour désigner l'ensemble vide

l'union A "UNION" B ={x | (x "in" A)+(x "in" B)}

l'intersection A "INTER" B={ x | (x "in" A).(x "in" B)}

Re: Pourquoi je ne crois pas en Dieu.

Posté : 14 août15, 06:05
par vic
Ultra filtre a dit :au passage sans même définir le vocabulaire qu'il emploie :
ensemble : on sait pas ce que c'est
concept d'appartenance : on sait pas ce que c'est
la seule chose qu'on sait : puisque c'est lui qui le décrète :
un élément d'un ensemble est lui-même un ensemble
Hawkins spécule sans doute oui , mais ça n'est pas moins idiot que les croyants et leur théorie encore plus bidon sur un dieu omniscient sorti de nul part .
Pourquoi un univers ne pourrait il pas lui sortir de nulle part sans dieu dans ce cas ? On peut poser que les lois de la physique sont ontologique comme je l'ai dit , même si c'est de la spéculation poser un dieu ontologique n'est pas supérieur au fait de poser les lois physiques de façon ontologique .Donc il a raison d'utiliser les mêmes méthodes douteuses que les croyants de lois physiques sorties de nul part à la place d'une dieu sorti de nul part .
Dans le mot " nul part " tu as le mot nul , donc zéro quoi qu'il en soit et même si ces deux théories nous mènent nul part ça sera encore plus une preuve du zéro , du nul .

Re: Pourquoi je ne crois pas en Dieu.

Posté : 14 août15, 06:17
par indian
vic a écrit :Pourquoi un univers ne pourrait il pas lui sortir de nulle part.... (sans dieu dans ce cas) ? On peut poser que les lois de la physique sont ontologique comme je l'ai dit , même si c'est de la spéculation poser un dieu ontologique n'est pas supérieur au fait de poser les lois physiques de façon ontologique .Donc il a raison d'utiliser les mêmes méthodes douteuses que les croyants de lois physiques sorties de nul part à la place d'une dieu sorti de nul part .
Dans le mot " nul part " tu as le mot nul , donc zéro .

En effet pourquoi pas :hi:
En total accord avec vous!!!!!

Et quelle excellent raison pour continuer à chercher pour savoir

Si on met Ultra en contingence... je me plaindrai...
Sur mon autorisation exprès, je peux être le sujet d'un fil.

Re: Pourquoi je ne crois pas en Dieu.

Posté : 15 août15, 11:57
par Galileo
HumanaFragilita a écrit :Pourquoi je ne crois pas en Dieu :

1) Parce que son existence n’est pas nécessaire au fonctionnement du cosmos. L’univers est régi par des lois immanentes qui suffisent à elles seules à expliquer tous les phénomènes que nous observons. L’objet de la science est de déterminer et de décrire ces lois.

2) Parce que l’hypothèse de Dieu échoue à répondre à ce qui est pour moi la question fondamentale : « Pourquoi y a-t-il quelque chose plutôt que rien ? ». En effet, cette question englobe tout ce qui existe ou pourrait exister, y compris l’existence hypothétique de Dieu. Il faudrait alors répondre non seulement de l’existence de l’univers, mais aussi de celle de Dieu, ce qui ne fait que repousser le problème sans lui apporter la moindre réponse.

3) Parce que, pour paraphraser Sartre, "l’existence précède l’essence". Autrement dit, Dieu doit d’abord exister, avant même de posséder la moindre caractéristique propre. Ceci invalide l’argument ontologique, selon lequel l’existence de Dieu serait rendue nécessaire par son essence parfaite.

4) Parce qu’il est extrêmement improbable qu’une entité aussi complexe que Dieu puisse apparaître spontanément. La science nous montre que la complexité émerge lentement à partir de paramètres simples, et que les choses n’évoluent pas du complexe vers le simple, à moins qu’elles ne se décomposent. Il faut des milliards d’années d’évolution, et des conditions très particulières, pour qu’émerge un être complexe et doté d’une conscience. L’hypothèse de Dieu renverse totalement cette logique, en postulant qu’il existe à l’origine du monde un état plus organisé que celui que nous observons aujourd’hui.

5) Parce que la pensée rationaliste débouche naturellement sur l’improbabilité de l’existence de Dieu. Le principe du rasoir d’Occam, à la base du rationalisme, postule qu’entre deux hypothèses décrivant un même phénomène, la plus simple doit être privilégiée. L’apparition spontanée d’un univers évoluant lentement et localement vers une forme de complexité, pour improbable qu'elle puisse paraître, est une hypothèse infiniment plus probable que l’apparition spontanée d’un Dieu parfait et omnipotent qui aurait créé l’univers dans un deuxième temps.

Ces cinq raisonnements forment pour moi un ensemble logique extrêmement solide qui ne laisse aucune place à Dieu. Mon athéisme n’est par conséquent ni un choix ni une croyance, mais une conséquence inévitable de la représentation positiviste que je me suis fait du monde.
Laisse tomber. Les croyants ne raisonnent pas. :-)

Re: Pourquoi je ne crois pas en Dieu.

Posté : 15 août15, 12:40
par JPG
Une petite nuance svp.

"les croyants ne raisonnent pas" selon la logique de ce monde. C'est pourquoi ils croient Dieu plutôt que ce que les humains veulent leur faire croire.

La croyance n'est pas qu'affaire entre Dieu et le fils de l'homme; la croyance est aussi de l'humain vers les oeuvres du diable, les sciences humaines, principalement, ensuite, les technologies.

JP

Re: Pourquoi je ne crois pas en Dieu.

Posté : 15 août15, 13:15
par Ikarus
Bref, vous ne raisonnez pas a partir d’élément tangible.

Re: Pourquoi je ne crois pas en Dieu.

Posté : 16 août15, 01:52
par indian
Ikarus a écrit :Bref, vous ne raisonnez pas a partir d’élément tangible.
Non...pas toujours...
Comme quand j'aime ma femme... pas toujours des ''élements tangibles''...

Re: Pourquoi je ne crois pas en Dieu.

Posté : 16 août15, 02:55
par Ikarus
Bah voilà. Perso, je sais les qualités de ceux que j'aime et je connait les défaut de ceux que je n'aime pas. :)

Re: Pourquoi je ne crois pas en Dieu.

Posté : 16 août15, 03:01
par indian
Ikarus a écrit :Bah voilà. Perso, je sais les qualités de ceux que j'aime et je connait les défaut de ceux que je n'aime pas. :)
C'est un bon début... :hi:

Il te manquera de découvrir les qualités de ceux que tu n'aimes pas... car ils en ont... :hum:
Mais tu ne veux peut être pas les voir non plus...? qui sait? je ne te conais pas.
Mais je suis certain que tu as des qualités...