logiciens aidons-les
Posté : 25 déc.16, 17:11
logiciens aidons-les
... alors puisqu'il en parle je pense que il a raison https://www.youtube.com/watch?v=wFLZG_-HUSw
essayons de communiquer de quoi il parle(après tout c'est le but)
deuxième axiome: Shéma d'axiomes de compréhension non restreint
qui stipule que si P est un prédicat de rang quelconque mais libre en x et si A est un ensemble alors l'ensemble des éléments de A pour lesquels P est vrai est aussi un ensemble
on le note {x|x "in" A|P(x)}
la notation x "in" A signifiant que l'élément x appartiens à l'ensemble A
là par contre on passe à autre chose : ça demande des explications
en premier lieu : une proposition possède une valeur logique et quand Zermelo a présenté ses axiomes il parlait de la valeur logique d'une proposition qui est en fait l'élément d'un ensemble definit par une algebre de Boole
si l'ensemble sur lequel est construit cet algebre est {0,1} alors dans ce cas les propositions sont soit de valeur 0 (fausses) soit de valeur 1 (vraies)
ATTENTION: ici parler des deux éléments 0 et 1 n'a strictement aucun rapport avec des entiers naturel
ici il s'agit d'une tout autre symbolique: la symbolique donnant une valeur à une proposition (en dehors de ce qu'elle peut dire)
mais en apparté comme on le verra plus loin : dans une algèbre de Boole rien interdit que l'ensemble possède plus de deux éléments mais bon on en reparlera
ici on parle de logique d'ordre zéro qui en fait est le calcul des propositions et de plus binaire : c'est à dire que l'ensemble sur lequel est construit cet algebre, possède que deux éléments
ensuite toujours en ce qui concerne ce deuxième axiome
pour toute proposition P on notera v(P) sa valeur
et de plus quelque soit l'algebre de Boole qui definie la logique d'ordre zéro (binaire ou pas)
lorsque v(P)=0 on dira que P est fausse
lorsque v(P)=1 on dira que P est vraie
en apparté on a vu les connecteurs logiques et d'autres symboles logiques
en ce qui concerne les prédicats
un prédicat P (majuscule ) est une proposition p (minuscule) dans laquelle on stipule par des quantificateurs...
le quantificateur "exists" signifie : "il existe"
et le symbole "nexist" pour signifier "il n'existe pas"
le quantificateur "forall" signifie : "tout" ou plus explicitement "quelque soit"
...donc par des quantificateurs qui s'exercent sur une ou plusieurs variables dites variables liées à ces quantificateurs
que la ou les variables libres , parmis une quantitée de variables fixées par les quantificateurs , vérifient la proposition p
on va prendre un exemple mais avant il faut bien faire attention à distinguer variable liée et variable libre
une variable liée ne possede pas d'identité propre : elle peut être remplacée par n'importe qu'elle autre variable qui n'apparait pas dans une formule
ainsi par exemple
"exists" x,(x<y) est identique à "exists" z,(z<y) en fait la seule variable libre et qui possede une identitee propre c'est y
on peut remplacer x par n'importe qu'elle varible mais pas par y
sachant qu'on a dit que "exists" x,(x<y) et donc que y possede une identitée propre alors il sera interdit de lier y par un quantificateur
car ce "y" est quelque chose possedent une existence concrète contrairement aux variables liées
enfin : le rang d'un prédicat designe la quantité de variables librres qu'il contiens
par exemple : "forall"x<y est un prédicat de rang 1 car il n'y a qu'une seule variable libre (c'est "y")
et pour terminer en ce qui concerne ce deuxieme axiome
on considere la terminologie
"exists"x,A(x) signifie qu'il existe un terme x pour lequel la relation A est vrai (il peut même en exister plusieurs)
"forall"x,A(x) signifie que A est vrai pour tout x
{x|A(x)} est un ensemble par lequel la relation A est vrai pour tous les éléments de cet ensemble
de plus si un element verifie cette relation alors cet élément appartiens à cet ensemble
le concept de l'inclusion
Soient deux ensembles E et F et une relation A(x):=(x "in" F)=>(x "in" E),"forall" x,A(x)
signifie qu'il existe deux ensembles E et F tels que tous les éléments de F appartiennent aussi à l'ensemble E
on notera : F 'inc" E et qui signifie que F est inclus dans E
par le schéma d'axiome de compréhension non restreint (le deuxième axiome) on construit l'ensemble F
que l'on note F={x|A(x):=x "in" F => x "in" E| P:="forall" x,A(x)}
ici P est un prédicat de rang 1 et A(x) la proposition qui doit se vérifier
l'ensemble des éléments de E pour lequel P est vrai est l'ensemble F
on vérifie l'équivalence logique (E=F)<=>(E "inc" F . F "inc" E)
c'est donc à partir du deuxième axiome et avec le concept de l'inclusion qui en découle que le premier axiome prend tout son sens
le premier axiome (axiome d'extentionnalité) disait que A=B si et seulement si A et B ont les mêmes éléments mais on ne savait pas comment cela était vérifiable
à présent on sait que A=B SI ET SEULEMENT SI
A est inclus B et aussi B est inclus dans A
formalisé ici par la notation
(A=B) <=> ((A "inc" B) . (B "inc" A))
et de plus on dispose à présent du premier concept de la théorie des ensembles : celui de l'inclusion
autre symbole
x "neq" y qui signifie x non égal à y
concept de la complémentarité
soient E et F deux ensembles, alors si
E\F est un ensemble que uniquement si F "inc" E , dans le cas contraire E\F n'a aucune signification
attention dire d'un objet maths qu'il n'a aucune signification cela reviens à dire que cet objet là n'a aucun sens
bref il ne possède aucune legitimité d'existence
donc si F "inc" E dans ce cas alors E\F est un ensemble que l'on nomme le complémentaire de F dans E
cet ensemble se construit selon
E\F={x | F "inc" E | x "in" E |x "notin" F | A(x):=(x "in" F)=>(x "in" E) }
cet ensemble existe que uniquement si F est inclus dans E dans le cas contraire il est absurde et ne possède aucune légitimité d'existence
en fait E\F désigne l'ensemble des éléments de E qui n'appartiennent pas à F
théorême de l'ensemble vide
Soit E un ensemble, par conséquent comme on l'a vu dans le premier concept celui de l'inclusion on vérifie donc E "inc" E
et aussi comme on l'a vu dans le deuxième concept celui de la complémentarité E\E existe
or quelque soit un élément qui serait dans E\E alors il faudrait qu'il soit à la fois dans E et à la fois abscent de E
ce qui est impossible
il résulte donc que E\E est un ensemble vide
de plus si E est lui même vide on vérifie quand même E "inc" E
notation Ø pour désigner l'ensemble vide
théorême de l'unicité
Soit E un ensemble alors si x "in" E et y "in" E tels que x=y on démontre que x et y sont un seul et même élément de E
admettons que E={x,y} "neq" {x} tandis que x=y
posons F={y} on vérifie donc F "inc" E de sorte que E\F={x}
mais étant donné que x=y il en résulte donc que E\F={y} or on a dit que y "in" F ce qui est absurde
le théorême de la totalité
ce théorême démontre une chose très importante : il n'existe pas d'ensemble de tous les ensembles
rien interdit dans l'axiomatique de Zermelo qu'il puisse exister des ensembles (un peu bizarres certes mais c'est un jugement de valeur que la notion de bizarrerie) que des ensembles puissent s'appartenirs à eux mêmes
E est un ensemble et si E s'appartiens à lui même alors E "in" E
cependant on peut demontrer que Ø "notin" Ø
en effet car si Ø est vide il ne peut rien contenir
il résulte donc que dans l'axiomatique de Zermelo il existe deux catégories d'ensembles
les ensembles qui s'appartiennent à eux mêmes et sont de types E "in" E et les autres qui sont de types E "notin" E
on démontre qu'il n'existe pas d'ensemble E tel que pour tout ensemble F on verifie F "in" E
en effet si cet ensemble existe alors il est tel que "forall" K , un ensemble alors E "notin" K et K "in" E
or si E est de type E "in" E alors il existe K=E tel que E "in" (K=E) or il faut que E "notin " K
si E est de type E "notin" E alors il existe K=E tel que E=K "notin" E or il faut que K "in" E
... alors puisqu'il en parle je pense que il a raison https://www.youtube.com/watch?v=wFLZG_-HUSw
essayons de communiquer de quoi il parle(après tout c'est le but)
deuxième axiome: Shéma d'axiomes de compréhension non restreint
qui stipule que si P est un prédicat de rang quelconque mais libre en x et si A est un ensemble alors l'ensemble des éléments de A pour lesquels P est vrai est aussi un ensemble
on le note {x|x "in" A|P(x)}
la notation x "in" A signifiant que l'élément x appartiens à l'ensemble A
là par contre on passe à autre chose : ça demande des explications
en premier lieu : une proposition possède une valeur logique et quand Zermelo a présenté ses axiomes il parlait de la valeur logique d'une proposition qui est en fait l'élément d'un ensemble definit par une algebre de Boole
si l'ensemble sur lequel est construit cet algebre est {0,1} alors dans ce cas les propositions sont soit de valeur 0 (fausses) soit de valeur 1 (vraies)
ATTENTION: ici parler des deux éléments 0 et 1 n'a strictement aucun rapport avec des entiers naturel
ici il s'agit d'une tout autre symbolique: la symbolique donnant une valeur à une proposition (en dehors de ce qu'elle peut dire)
mais en apparté comme on le verra plus loin : dans une algèbre de Boole rien interdit que l'ensemble possède plus de deux éléments mais bon on en reparlera
ici on parle de logique d'ordre zéro qui en fait est le calcul des propositions et de plus binaire : c'est à dire que l'ensemble sur lequel est construit cet algebre, possède que deux éléments
ensuite toujours en ce qui concerne ce deuxième axiome
pour toute proposition P on notera v(P) sa valeur
et de plus quelque soit l'algebre de Boole qui definie la logique d'ordre zéro (binaire ou pas)
lorsque v(P)=0 on dira que P est fausse
lorsque v(P)=1 on dira que P est vraie
en apparté on a vu les connecteurs logiques et d'autres symboles logiques
en ce qui concerne les prédicats
un prédicat P (majuscule ) est une proposition p (minuscule) dans laquelle on stipule par des quantificateurs...
le quantificateur "exists" signifie : "il existe"
et le symbole "nexist" pour signifier "il n'existe pas"
le quantificateur "forall" signifie : "tout" ou plus explicitement "quelque soit"
...donc par des quantificateurs qui s'exercent sur une ou plusieurs variables dites variables liées à ces quantificateurs
que la ou les variables libres , parmis une quantitée de variables fixées par les quantificateurs , vérifient la proposition p
on va prendre un exemple mais avant il faut bien faire attention à distinguer variable liée et variable libre
une variable liée ne possede pas d'identité propre : elle peut être remplacée par n'importe qu'elle autre variable qui n'apparait pas dans une formule
ainsi par exemple
"exists" x,(x<y) est identique à "exists" z,(z<y) en fait la seule variable libre et qui possede une identitee propre c'est y
on peut remplacer x par n'importe qu'elle varible mais pas par y
sachant qu'on a dit que "exists" x,(x<y) et donc que y possede une identitée propre alors il sera interdit de lier y par un quantificateur
car ce "y" est quelque chose possedent une existence concrète contrairement aux variables liées
enfin : le rang d'un prédicat designe la quantité de variables librres qu'il contiens
par exemple : "forall"x<y est un prédicat de rang 1 car il n'y a qu'une seule variable libre (c'est "y")
et pour terminer en ce qui concerne ce deuxieme axiome
on considere la terminologie
"exists"x,A(x) signifie qu'il existe un terme x pour lequel la relation A est vrai (il peut même en exister plusieurs)
"forall"x,A(x) signifie que A est vrai pour tout x
{x|A(x)} est un ensemble par lequel la relation A est vrai pour tous les éléments de cet ensemble
de plus si un element verifie cette relation alors cet élément appartiens à cet ensemble
le concept de l'inclusion
Soient deux ensembles E et F et une relation A(x):=(x "in" F)=>(x "in" E),"forall" x,A(x)
signifie qu'il existe deux ensembles E et F tels que tous les éléments de F appartiennent aussi à l'ensemble E
on notera : F 'inc" E et qui signifie que F est inclus dans E
par le schéma d'axiome de compréhension non restreint (le deuxième axiome) on construit l'ensemble F
que l'on note F={x|A(x):=x "in" F => x "in" E| P:="forall" x,A(x)}
ici P est un prédicat de rang 1 et A(x) la proposition qui doit se vérifier
l'ensemble des éléments de E pour lequel P est vrai est l'ensemble F
on vérifie l'équivalence logique (E=F)<=>(E "inc" F . F "inc" E)
c'est donc à partir du deuxième axiome et avec le concept de l'inclusion qui en découle que le premier axiome prend tout son sens
le premier axiome (axiome d'extentionnalité) disait que A=B si et seulement si A et B ont les mêmes éléments mais on ne savait pas comment cela était vérifiable
à présent on sait que A=B SI ET SEULEMENT SI
A est inclus B et aussi B est inclus dans A
formalisé ici par la notation
(A=B) <=> ((A "inc" B) . (B "inc" A))
et de plus on dispose à présent du premier concept de la théorie des ensembles : celui de l'inclusion
autre symbole
x "neq" y qui signifie x non égal à y
concept de la complémentarité
soient E et F deux ensembles, alors si
E\F est un ensemble que uniquement si F "inc" E , dans le cas contraire E\F n'a aucune signification
attention dire d'un objet maths qu'il n'a aucune signification cela reviens à dire que cet objet là n'a aucun sens
bref il ne possède aucune legitimité d'existence
donc si F "inc" E dans ce cas alors E\F est un ensemble que l'on nomme le complémentaire de F dans E
cet ensemble se construit selon
E\F={x | F "inc" E | x "in" E |x "notin" F | A(x):=(x "in" F)=>(x "in" E) }
cet ensemble existe que uniquement si F est inclus dans E dans le cas contraire il est absurde et ne possède aucune légitimité d'existence
en fait E\F désigne l'ensemble des éléments de E qui n'appartiennent pas à F
théorême de l'ensemble vide
Soit E un ensemble, par conséquent comme on l'a vu dans le premier concept celui de l'inclusion on vérifie donc E "inc" E
et aussi comme on l'a vu dans le deuxième concept celui de la complémentarité E\E existe
or quelque soit un élément qui serait dans E\E alors il faudrait qu'il soit à la fois dans E et à la fois abscent de E
ce qui est impossible
il résulte donc que E\E est un ensemble vide
de plus si E est lui même vide on vérifie quand même E "inc" E
notation Ø pour désigner l'ensemble vide
théorême de l'unicité
Soit E un ensemble alors si x "in" E et y "in" E tels que x=y on démontre que x et y sont un seul et même élément de E
admettons que E={x,y} "neq" {x} tandis que x=y
posons F={y} on vérifie donc F "inc" E de sorte que E\F={x}
mais étant donné que x=y il en résulte donc que E\F={y} or on a dit que y "in" F ce qui est absurde
le théorême de la totalité
ce théorême démontre une chose très importante : il n'existe pas d'ensemble de tous les ensembles
rien interdit dans l'axiomatique de Zermelo qu'il puisse exister des ensembles (un peu bizarres certes mais c'est un jugement de valeur que la notion de bizarrerie) que des ensembles puissent s'appartenirs à eux mêmes
E est un ensemble et si E s'appartiens à lui même alors E "in" E
cependant on peut demontrer que Ø "notin" Ø
en effet car si Ø est vide il ne peut rien contenir
il résulte donc que dans l'axiomatique de Zermelo il existe deux catégories d'ensembles
les ensembles qui s'appartiennent à eux mêmes et sont de types E "in" E et les autres qui sont de types E "notin" E
on démontre qu'il n'existe pas d'ensemble E tel que pour tout ensemble F on verifie F "in" E
en effet si cet ensemble existe alors il est tel que "forall" K , un ensemble alors E "notin" K et K "in" E
or si E est de type E "in" E alors il existe K=E tel que E "in" (K=E) or il faut que E "notin " K
si E est de type E "notin" E alors il existe K=E tel que E=K "notin" E or il faut que K "in" E